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We have seen different types of transmission line resonators. Let us now consider Waveguide 

Resonators. At higher microwave frequencies the transmission line resonators have a relatively 

low value of Q. Since open-ended waveguide can radiate significantly, waveguide resonators 

are usually short-circuited at both ends, forming a cavity. Electrical and magnetic energy is 

stored within the cavity. 

So, a rectangular cavity and a cylindrical cavity is shown in the figure. So, you can see that this 

rectangular cavity is essentially a rectangular waveguide, and with both the ends it is now short-

circuited. Similarly it is a circular waveguide with end caps at both ends. Now, the dissipation 

of power takes place on the waveguide walls as well as in the dielectric material feeling the 

cavity if the dielectric is lossy. 
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Coupling to cavity resonator may be done using a small aperture or a probe or a loop. So, this 

is an aperture coupling where, through this aperture, the coupling with the cavities is achieved. 

This is a probe coupling where the central probe goes inside the cavity, and this is a loop 

coupling where the central conductor of the coax forms a loop. 
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So, we start our discussion by determining the resonant frequencies of rectangular cavity. So, 

here we show a rectangular cavity which has sides a, b, and d. So, what we do? We first find 

the resonant frequencies for such cavity assuming that the cavity walls are lossless and also the 

dielectric material if any present within this cavity it is also lossless.  



The unloaded Q of the cavity is then determined considering the small amount of loss on the 

waveguide walls as well as in the dielectric material. So, initially we find the resonant 

frequency considering lossless condition. 
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For TEmn or TMmn mode 

�⃗� 𝑡(𝑥, 𝑦, 𝑧) = 𝑒 (𝑥, 𝑦)(𝐴+𝑒−𝑗𝛽𝑚𝑛𝑧 + 𝐴−𝑒𝑗𝛽𝑚𝑛𝑧) 

where, 

𝛽𝑚𝑛 = √𝑘2 − (
𝑚𝜋

𝑎
)
2

− (
𝑛𝜋

𝑏
)
2

 

 

So, for TE mn or TM mn mode we can write the transverse electric fields in the form of e bar 

x, y which takes into account transverse variation, variation with respect to x and y and this 

bracketed term gives the longitudinal variation and since the cavity is closed at both ends. We 

have also considered the reflected wave and therefore A plus and A minus this is at the 

amplitudes of the forward and backward wave. 

And beta mn this is given by k square minus m pi by a whole square plus n pi by b whole 

square and everything under root. So, what happens? Now, we have at Z is equal to 0, and Z is 

equal to d we have perfectly conducting walls. 
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�⃗� 𝑡 = 0 at 𝑧 = 0           ⇒ 𝐴+ = −𝐴− 

�⃗� 𝑡 = 0 at 𝑧 = 𝑑 

∴ �⃗� 𝑡(𝑥, 𝑦, 𝑑) = −𝑒 (𝑥, 𝑦)𝐴+2𝑗 sin 𝛽𝑚𝑛𝑑 = 0 

For 𝐴+ ≠ 0 

𝛽𝑚𝑛𝑑 = 𝑙𝜋    where 𝑙 = 1,2,3… 

∴ For a rectangular cavity, the wave number 

𝑘𝑚𝑛𝑙 = √(
𝑚𝜋

𝑎
)
2

+ (
𝑛𝜋

𝑏
)
2

+ (
𝑙𝜋

𝑑
)
2

 

For 𝑏 < 𝑎 < 𝑑, the dominant resonant mode is TE101 and 𝑑 =
𝜆𝑔

2
 for TE10 mode. 

 

 

And therefore, the tangential component E t tangential field has to be 0 at Z is equal to 0 and 

this condition will give A plus equal to minus A minus. E t is also 0 at Z is equal to d here and 

this condition once we substitute A minus to be equal to minus of A plus and divide throughout 

by 2j here in this term if we substitute A minus to be equal to minus of A plus then we can take 

A plus outside and divide numerator and denominator by 2j. 

In that case we get E t x, y, d to be equal to minus e x, y A plus 2j sin beta mn d and that must 

be equal to 0 here and sin beta mn d equal to 0 this implies that beta mn d is equal to l pi where 

l is equal to 1, 2, 3. And therefore for a rectangular cavity now we can write the wavenumber 



kmnl which is equal to m pi by a whole square, n pi by b whole square plus l pi by d whole 

square.  

And therefore, for a rectangular cavity we can write the wavenumber kmnl as under root m pi 

by a whole square plus n pi by b whole square plus l pi by d whole square. Now, whenever we 

have this b less than a and a less than d the dominant mode will be TE101 and this dimension d 

will be lambda g by 2 for the TE10 mode. 
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For TE10𝑙 mode we can write the field components as follows: 

𝐸𝑦 = 𝐴+ sin
𝜋𝑥

𝑎
(𝑒−𝑗𝛽𝑧 − 𝑒𝑗𝛽𝑧) 

𝐻𝑥 = −
𝐴+

𝑍TE
sin

𝜋𝑥

𝑎
(𝑒−𝑗𝛽𝑧 + 𝑒𝑗𝛽𝑧) 

𝐻𝑧 =
𝑗𝜋𝐴+

𝑘𝜂𝑎
cos

𝜋𝑥

𝑎
(𝑒−𝑗𝛽𝑧 − 𝑒𝑗𝛽𝑧) 

We have seen that for TE10 mode 

𝐻𝑧 = 𝐴10 cos
𝜋𝑥

𝑎
𝑒−𝑗𝛽𝑧 

𝐸𝑦 =
−𝑗𝜔𝜇𝑎

𝜋
𝐴10 sin

𝜋𝑥

𝑎
𝑒−𝑗𝛽𝑧 

𝐻𝑥 =
𝑗𝛽𝑎

𝜋
𝐴10 sin

𝜋𝑥

𝑎
𝑒−𝑗𝛽𝑧 

𝐻𝑦 = 𝐸𝑥 = 0 

∴
−𝑗𝜔𝜇𝑎

𝜋
𝐴10 = 𝐴+ 

⇒ 𝐴10 = 𝑗𝐴+
𝜋

𝜔𝜇𝑎
=

𝑗𝐴+𝜋

𝑘𝜂𝑎
 

∵ 𝜔𝜇 = 𝑘𝜂 

 



 

Now, let us calculate the unloaded Q of TE10l mode. For TE10l mode we can write the field 

components E y component we can write A plus sin pi x by a e to the power minus j beta z 

minus e to the power j beta z. so, this is the wave that is traveling in the plus z and this is in the 

minus z-direction. And similarly we can write H x is equal to A plus by z TE sin pi x by a e to 

the power minus j beta z plus e to the power j beta z and we can write H z in this particular 

form.  

Now, how we can put these forms? Because we have seen TE10 mode, for TE10 mode we had 

H z is equal to A 10 cos pi x by a e to the power minus j beta z and E y minus j omega mu a 

divided by pi A 10 sin pi x by a e to the power minus j beta z and H x is equal to j beta a by pi 

A 10 sin pi x by a e to the power minus j beta z. These expressions we have already seen in our 

discussion on dominant TE 10 mode of a rectangular waveguide. 

Now, what we do? We are writing A plus for this term minus j omega mu a by pi if you compare 

E y from here and E y from here and therefore A 10 becomes j A plus pi by omega mu a and 

this can be written as j A plus pi by k eta a. Since we have omega mu is equal to k eta and now 

you can see that here in this expression H z is A 10 and A 10 in terms of A plus it is j pi A plus 

by k eta a. 

So, this is how we are writing the same field equations what we studied earlier in slightly 

different form. Similarly we can see that H x can be put in the form of minus A plus divided 

by Z TE sin pi x by a e to the power minus j beta z plus e to the power j beta z and this Z TE is 

actually omega mu by beta. So, this expressions we have already seen earlier and using this 

expressions we can write the E y, H x and H z field components in the form shown here. 



It may be noted that in this expressions we are only considering the waves which are traveling 

in the plus Z direction, in cavity we consider the waves which travel in plus Z as well as minus 

Z direction. 
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𝐸𝑦 = 𝐴+ sin
𝜋𝑥

𝑎
(𝑒−𝑗𝛽𝑧 − 𝑒𝑗𝛽𝑧) 

𝐻𝑥 = −
𝐴+

𝑍TE
sin

𝜋𝑥

𝑎
(𝑒−𝑗𝛽𝑧 + 𝑒𝑗𝛽𝑧) 

𝐻𝑧 =
𝑗𝜋𝐴+

𝑘𝜂𝑎
cos

𝜋𝑥

𝑎
(𝑒−𝑗𝛽𝑧 − 𝑒𝑗𝛽𝑧) 

Substituting 𝐸0 =
2𝐴+

𝑗
, we get 

𝐸𝑦 = 𝐸0 sin
𝜋𝑥

𝑎
sin

𝑙𝜋𝑧

𝑑
 

𝐻𝑥 = −
𝑗𝐸0

𝑍TE
sin

𝜋𝑥

𝑎
cos

𝑙𝜋𝑧

𝑑
 

𝐻𝑧 =
𝑗𝜋𝐸0

𝑘𝜂𝑎
cos

𝜋𝑥

𝑎
sin

𝑙𝜋𝑧

𝑑
 

𝑊𝑒 =
𝜖

4
∫ 𝐸𝑦𝐸𝑦

∗

𝑉

𝑑𝑣 =
𝜖𝑎𝑏𝑑

16
|𝐸0|

2 

At resonance, 

𝑊𝑒 = 𝑊𝑚 

 

 



So, we have E y, H x and H z components defined. So, if we substitute E naught is equal to 2A 

plus by j that means A plus is equal to E naught j by 2 then we can write E y to be equal to E 

naught sin pi x by a and this can be written as sin l pi z by d because we have seen that beta 

becomes equal to l pi by d. Similarly, we can write H x to be equal to minus j E naught by Z 

TE sin pi x by a cos l pi z by d and H z is j pi E naught divided by k eta a cos pi x by a sin l pi 

z by d. 

So, once we have these field components written in this form what we can do? We can find out 

the electric energy that is stored within the cavity, inside this electric field E y and that can be 

computed as epsilon by 4 an it is volume integral E y E y conjugate dv and when this 

expressions for the E y field component is substituted and we evaluate this integral over the 

volume of the cavity that means 0 to a, 0 to b and 0 to d respectively being the variation of a x, 

y and z we get this expression. And we know that at resonance stored electrical energy W e is 

same as stored magnetic energy W m. 
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Case I. The dielectric is perfect but cavity walls are slightly lossy 

The power loss on the conducting walls can be found as  

𝑃𝑐 =
𝑅𝑠

2
∫ |𝐻𝑡|

2𝑑𝑠
𝑤𝑎𝑙𝑙𝑠

 

𝑅𝑠 = √
𝜔𝜇0

2𝜎
 

The conductor loss can be found as  

𝑃𝑐 =
𝑅𝑠𝐸0

2𝜆2

8𝜂2
(
𝑙2𝑎𝑏

𝑑2
+

𝑏𝑑

𝑎2
+

𝑙2𝑎

2𝑑
+

𝑑

2𝑎
) 

𝑄𝑐 =
2𝜔0𝑊𝑒

𝑃𝑐
 



 

Now, we consider the case when the dielectric is perfect but the cavity walls are slightly lossy. 

So, what we can do? We can find out the power loss on the conducting walls and that can be 

found out as P c is equal to R s by 2 integrated over the walls we have six walls and at each 

wall we find out mod of H t square ds and R s the sheet resistance for the conductors it is given 

by omega mu not by 2 sigma it is the surface resistivity of the metallic walls and we can find 

the conductor loss. 

So, when we substitute these field components, tangential field components when we substitute 

tangential magnetic field components in this expression and find out the power loss in the 

individual walls and then add them together this is the expression for the conductor loss and 

we can now define Q c which is equal to 2 times W e this is the energy stored multiplied by 

omega naught and divided by P c the power dissipated in the conductors. 
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Case II. The dielectric is lossy but cavity walls are perfectly conducting. 

𝜖 = 𝜖′ − 𝑗𝜖′′ = 𝜖0𝜖𝑟(1 − 𝑗 tan 𝛿) 

Power dissipated within the dielectric volume is  

𝑃𝑑 =
1

2
∫ 𝐽 
𝑉

. �⃗� ∗𝑑𝑣 =
𝜔𝜖′′

2
∫ |𝐸|2𝑑𝑣
𝑉

 

=
𝑎𝑏𝑑𝜔𝜖′′|𝐸0|

2

8
 

𝑄𝑑with lossy dielectric but perfectly conducting wall is 

𝑄𝑑 =
2𝜔

𝜖′𝑎𝑏𝑑
16

|𝐸0|
2

𝑎𝑏𝑑𝜔𝜖′′|𝐸0|2

8

=
𝜖′

𝜖′′
=

1

tan 𝛿
 

Unloaded Q of the cavity is 

𝑄0 = (
1

𝑄𝑐
+

1

𝑄𝑑
)
−1

 

 

In the second case we consider the dielectric to be slightly lossy but the cavity walls are 

perfectly conducting and in that case we can write epsilon to be equal to epsilon dash minus j 

epsilon double dash and this we can write as epsilon naught epsilon r 1 minus j tan delta where 

tan delta is the loss tangent and power dissipated within the dielectric volume can be found out 

as P d equal to half volume integral of J dot E conjugate dv and this is becomes omega epsilon 

double prime divided by 2 volume integral of mod of E square dv. 



And from there, if we substitute the expression for electric field we get abd omega epsilon 

double prime E naught magnitude square by 8. So, Q d with lossy dielectric but perfectly 

conducting wall can then be found out. So, 2 epsilon prime abd by 16 mod of E naught square 

this gives the total stored energy multiplied by omega and we have found out P d so we 

substitute the expression for P d. 

And then we get a very simple relation for Q d which is equal to epsilon prime by epsilon 

double prime and this becomes equal to 1 by tan delta. So, we have seen for the two cases when 

the dielectric is lossless but the waveguide walls are lossy and in the second case when the 

waveguide walls are perfectly conducting but the dielectric is slightly lossy.  

So, we can find the overall unloaded Q, Q naught as we have seen in the earlier case 1 by Q 

naught will become 1 by Q c plus 1 by Q d and therefore Q naught will be 1 by Q c plus 1 by 

Q d whole rest to the power minus 1. 
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Since the dominant mode of circular waveguide is TE11, the dominant mode of the circular 

waveguide cavity is TE111. 

For TM modes, the mode with the lowest cut off frequency is TM01 mode. 

The resonant frequencies of  TE𝑛𝑚𝑙 and TM𝑛𝑚𝑙 modes of the circular waveguide cavities can 

be found as follows: 

�⃗� 𝑡(𝜌, ∅, 𝑧) = 𝑒 (𝜌, ∅)(𝐴+𝑒−𝑗𝛽𝑛𝑚𝑧 + 𝐴−𝑒𝑗𝛽𝑛𝑚𝑧) 

For TE𝑛𝑚 mode 

𝛽𝑛𝑚 = √𝑘2 − (
𝑝𝑛𝑚

′

𝑎
)
2

 

For TM𝑛𝑚 mode 

𝛽𝑛𝑚 = √𝑘2 − (
𝑝𝑛𝑚

𝑎
)
2

 

  



 

Let us now discuss about the circular waveguide cavity resonator. Since the dominant mode of 

circular waveguide is TE 11, the dominant mode of circular waveguide cavity is TE 111. For TM 

modes, the mode with the lowest cut off frequency is TM 01 in a circular waveguide. Now, we 

can write the tangential component of the electric field in the same manner in terms of the 

transverse coordinates rho and phi and also a wave traveling along plus z and minus z and we 

use this to find out the resonant frequencies for the TE nml and TM nml modes of the circular 

waveguide. 

For TE nm mode, we have beta nm is equal to k square minus P prime nm by a whole square 

we remember that this term it is the roots of the derivative of Bessel function and for TM nm 

mode we have beta nm is equal to under root k square minus P nm by a whole square.  
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�⃗� 𝑡 = 0 at 𝑧 = 0  

We have   

𝐴+ = −𝐴− 

�⃗� 𝑡 = 0 at 𝑧 = 𝑑 

We have 

sin 𝛽𝑛𝑚𝑑 = 0 

𝛽𝑚𝑛𝑑 = 𝑙𝜋    where 𝑙 = 1,2,3… 

 

For the resonant TE𝑛𝑚𝑙 mode 

𝑓𝑛𝑚𝑙 =
𝑐

2𝜋√𝜇𝑟𝜖𝑟

√(
𝑝𝑛𝑚

′

𝑎
)
2

+ (
𝑙𝜋

𝑑
)
2

 

For the resonant TM𝑛𝑚𝑙 mode 

𝑓𝑛𝑚𝑙 =
𝑐

2𝜋√𝜇𝑟𝜖𝑟

√(
𝑝𝑛𝑚

𝑎
)
2

+ (
𝑙𝜋

𝑑
)
2

 

 

From the condition that E tangential is equal to 0 at z is equal to 0 we get A plus is equal to 

minus A minus. Now, when this condition is substituted for the expression of the tangential 

electric field we will get a term which is sin beta z and we know that E t will have to 0 at z is 

equal to d and that means sin beta nm d should be equal to 0 and from there we get beta nm 

should be equal to l pi. 



And therefore the resonant TE nml modes, we have the resonant frequency given by f nml is equal 

to c by 2 pi root mu r epsilon r P prime nm by a whole square plus l pi by d whole square. And 

that for the TM nml mode we have f nml is equal to c by 2 pi under root epsilon mu r P nm by a 

whole square plus l pi by d whole square.  
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The Q factor for the cylindrical cavities we can find out adopting the same procedure and 

considering first lossless dielectric and the cavity walls are lossy and then we can consider the 

Q factor for the cylindrical cavities can be found in the same manner as in the rectangular 

cavities and we can first consider, the case when the dielectric is lossless but the cavity walls 

are slightly lossy. And then for the second case when the cavity wall is perfectly lossless 

whereas the dielectric is slightly lossy and then find out the unloaded Q as in the case of a 

rectangular cavity. 
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The cylindrical cavity operating at TE 011 mode is often used in the frequency meters because 

of it is higher values of Q, this type of frequency meters are used in as direct reading type 

microwave frequency meters. So, we have seen different types of resonators the transmission 

line and waveguide type resonators, and we have seen how near resonant frequency. We can 

find an equivalent RLC representation for a transmission line type resonator. 
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In the next module we will discuss about power dividers, directional couplers and filters.  


