
Microwave Engineering 

Professor Ratnajit Bhattacharjee 

Department of Electronics and Electrical Engineering 

Indian Institute of Technology Guwahati 

Lecture 19 – Microwave Filters Part-1 

 

In the previous lectures, we discussed the power dividers and directional couplers. In this 

lecture we will discuss microwave filters. 
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An ideal filter provides perfect transmission for all frequencies in certain passband regions and 

infinite attenuation in stopband region. Typical filter responses, different types of filter 

responses are low pass. So in a low pass filter signals between 0 and some upper limit of 

frequency are transmitted and all frequencies above the cut-off frequency, they are attenuated. 

Another response is high pass response. And high pass filter transmits all frequencies above 

some lower cut-off frequency and attenuates all frequencies below the cut-off frequency. 

Bandpass filter transmits all frequencies within a range of two frequencies, omega 1 and omega 

2, and attenuates all frequencies outside this range. And a band-reject filter attenuates signals 

over a band of frequencies. So filter characteristics can belong to any of these typical responses, 

either low pass, high pass, bandpass or band-reject. 
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Filter design problems at microwave frequencies where distributed parameters are required to 

be used are quite complicated. Two commonly used low-frequency filter synthesis techniques 

are image parameter method. In this approach, filter with required passband and stopband 

characteristics can be synthesized but without exact frequency characteristics over each region. 

Another approach of designing filter is by insertion loss method, which provides a systematic 

way to synthesize the desired response with a higher degree of control over the passband and 

stop band amplitude and phase characteristics. In our discussion we will consider the insertion 

loss method. 
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Some of the design trade-offs for microwave filters synthesis using the insertion loss method 

are binomial responses used when obtaining a minimum insertion loss is the priority. So we go 

for a binomial response when obtaining a minimum insertion loss. A Chebyshev response 

satisfies the requirement of sharp cut-off, that means filter response beyond the cut-off 

frequency if it is to fall very sharply then we go for Chebyshev response. 

A linear phase filter design is used in cases where the attenuation rate can be sacrificed for a 

better phase response. We will see that a binomial response or a Chebyshev response, we 

essentially specify the magnitude response of the filter. Whenever we require some specified 

phase response, the attenuation rate can be sacrificed, and a linear phase filter design 

methodology can be adopted. 
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The insertion loss or the power loss ratio in a filter network can be defined as: 

𝑃𝐿𝑅 =
Power available from the source

Power delivered to the load
 

=
𝑃𝑖𝑛
𝑃𝐿𝑜𝑎𝑑

=
1

1 − |𝛤(𝜔)|2
 

The insertion loss in dB is given by 

𝐼𝐿 = 10 log 𝑃𝐿𝑅 

Since |𝛤(𝜔)|2 is an even function of 𝜔. We can express |𝛤(𝜔)|2 as a polynomial in 𝜔2.  

|𝛤(𝜔)|2 =
𝑀(𝜔2)

𝑀(𝜔2) + 𝑁(𝜔2)
 

where, 𝑀 and 𝑁 are real polynomials in 𝜔2.  

∴ 𝑃𝐿𝑅 =
1

1 −
𝑀(𝜔2)

𝑀(𝜔2) + 𝑁(𝜔2)

 

=
𝑀(𝜔2) + 𝑁(𝜔2)

𝑁(𝜔2)
 

∴ 𝑃𝐿𝑅 = 1 +
𝑀(𝜔2)

𝑁(𝜔2)
 

 



 

Now we introduce one parameter, which is called Power Loss Ratio. The power loss ratio in a 

filter network we can define as PLR is equal to power available from the source divided by 

power delivered to the load, and therefore it can be written as P in by P load which is equal to 

1 by 1 minus mod gamma omega square because we know that P load is P in into 1 minus mod 

gamma omega square. 

And insertion loss in dB is given by IL is equal to 10 log PLR. Since magnitude of gamma 

omega square is an even function of omega, we can express gamma omega square as a 

polynomial in omega square and magnitude of gamma omega square can be written as M of 

omega square divided by M of omega square plus N of omega square where we have this M 

and N are real polynomials in omega square and therefore PLR the power loss ratio it becomes 

1 by 1 minus M of omega square divided by M omega square plus N omega square and this 

can be written as M omega square plus N omega square divided by N omega square. And 

finally PLR is equal to 1 plus M omega square divided by N omega square. 
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𝑃𝐿𝑅 = 1 + 𝑘2 (
𝜔

𝜔𝑐
)
2𝑁

 

For 𝜔 > 𝜔𝑐, the attenuation increases monotonically with frequency. 

For 𝜔 ≫ 𝜔𝑐, 

𝑃𝐿𝑅 ≃ 𝑘2 (
𝜔

𝜔𝑐
)
2𝑁

 

The insertion loss increases at the rate 20N dB/decade. 



 

 

Now this power loss ratio we have written in the form of polynomials in omega square M and 

N. Now let us see some practical filter responses. The first one we consider it is called a 

maximally flat filter. Such filters are known as binomial or Butterworth filter. And for a low 

pass filter the power loss ratio is specified as PLR is equal to 1 plus k square into omega by 

omega c raised to the power 2N. Here capital N is the order of the filter and omega c is the cut-

off frequency. So at omega equal to omega c PLR value becomes 1 plus k square. When omega 

is larger than omega c, attenuation increases monotonically with frequency. As the frequency 

is increased, the attenuation increases, and when omega is very very large compared to omega 

c, we can approximate PLR to be equal to k square omega by omega c raised to the power 2N. 

And therefore by insertion loss increases at the rate of 20N dB per decade when omega is much 

much larger compared to omega c. So 20N dB per decade means as the frequency changes 

frequency becomes 10 times larger, the attenuation increases by 20N dB, N is the order of the 

filter. 
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𝑃𝐿𝑅 = 1 + 𝑘2𝑇𝑁
2 (

𝜔

𝜔𝑐
) 

For 𝜔 < 𝜔𝑐, 𝑇𝑁
2(

𝜔

𝜔𝑐
) will oscillate between ±1. 

The passband response has ripples of amplitude 1 + 𝑘2 

For 𝜔 ≫ 𝜔𝑐, 

𝑇𝑁
2 (

𝜔

𝜔𝑐
) ≃

1

2
(
2𝜔

𝜔𝑐
)
2𝑁

 

∴ 𝑃𝐿𝑅 ≃
𝑘2

4
(
2𝜔

𝜔𝑐
)
2𝑁

 

 

 

Another response which is used in the design of filters is equal ripple. Such filter response is 

also known as Chebyshev response. And for a low pass filter power loss ratio is given by PLR 

is equal to 1 plus k square TN square omega by omega c. Now, this TN, these are Chebyshev 

polynomial, and for omega less than omega c, TN will oscillate between plus minus 1. The 

passband response has ripples of amplitude 1 plus k square. 

For omega much larger than omega c, TN square omega by omega c this becomes 

approximately half 2 omega by omega c raised to the power 2N and PLR becomes k square by 

4, 2 omega by omega c raised to the power 2N, so here also insertion loss increases at the rate 

of 20N dB per decade, but the insertion loss in Chebyshev response is greater by a factor 2 to 

the power 2N by 4 than binomial response at omega much much larger compared to omega c. 
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So this is shown here for the filter order of 3. Here we can see that Y-axis is the power loss 

ratio PLR. Now for a maximally flat filter at omega by omega c equal to 1 it becomes 1 plus k 

square. Also for the equal ripple case also at this passband edge it becomes 1 plus k square but 

here we see oscillation within the passband whereas maximally flat filter increases, the power 

loss ratio increases very gradually and after the passband edge that means for omega by omega 

c greater than 1 we find that the attenuation becomes much much sharper or stiffer for equal 

ripple response as compared to maximally flat. 
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ϕ(𝜔) = 𝐴𝜔 [1 + 𝑝 (
𝜔

𝜔𝑐
)
2𝑁

] 

The group delay is defined as 

𝜏𝑑 =
𝑑ϕ

𝑑𝜔
 

= 𝐴 [1 + 𝑝(2𝑁 + 1) (
𝜔

𝜔𝑐
)
2𝑁

] 

Group delay is a maximally flat response 

 



 

We talked about linear phase although we will not discuss this in detail. For some applications, 

a linear phase response is desired in the passband. And a linear phase response can be achieved 

using the phase response given by phi omega is equal to A omega 1 plus p omega by omega c 

raised to the power 2N. Here phi omega is the phase of the voltage transfer function of the filter 

and p is a constant. 

We define one parameter, which is group delay tau d is equal to d phi by d omega, and if we 

find out d phi by d omega from this expression then tau d becomes A into 1 plus p 2N plus 1 

omega by omega c raised to the power 2N. Group delay thus becomes maximally flat response, 

and in a linear phase filter, the phase distortion will be kept under control while designing the 

filter. 
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The steps involved in filter design by insertion loss method are we start with some filter 

specification. In filter specification we specify the cut-off frequency, if it is a low pass or a high 

pass filter we specify the frequencies of the passband edges for a bandpass filter, and also we 

specify outside the passband how the insertion loss will happen and we will see that insertion 

loss specification outside the passband at some frequency, this information will be used in 

designing the order of the filter. 

So once we have the filter specification, we know the order of the filter that would be needed. 

We go for a low pass prototype design and for that prototype design we can find out the 

parameters of the prototype filter. This prototype is a low pass filter with unity cut-off 

frequency, the source resistance is normalized to unity and the load impedance also in many 

cases is normalized to unity. 

So, therefore, after finding the prototype filter we need to do scaling. We need to scale the cut-

off frequency of the filter to its actual cut-off frequency value, and once you do the scaling the 

reactive elements, inductor, and capacitor values calculated from the low pass prototype they 

will change. 

Similarly, we need to do impedance scaling because our source resistance in the prototype is 

unity. So once we do all such scaling and then depending upon the type of the filter, we intend 

to design. We can also perform transformation from low pass to high pass, low pass to 

bandpass, from low pass to band-reject. After this comes the actual implementation phase. In 

this implementation phase we need to decide how we are going to implement the filter. 

It may be using lambda element. It may be using transmission line sections, maybe microstrip 

lines, or it may be using waveguides. So this implementation of the design filters is quite 

involved, and we will not attempt it here. 
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Let the source impedance be 1𝛺 and 𝜔𝑐 = 1 rad/sec.  

For 𝑁 = 2, 

𝑃𝐿𝑅 = 1 +𝜔4 

and 

𝑍𝑖𝑛 = 𝑗𝜔𝐿 +
𝑅(1 − 𝑗𝜔𝑅𝐶)

1 + 𝜔2𝑅2𝐶2
 



𝛤 =
𝑍𝑖𝑛 − 1

𝑍𝑖𝑛 + 1
 

∴ 𝑃𝐿𝑅 =
1

1 − |𝛤|2
=

1

1 − [
(𝑍𝑖𝑛 − 1)
(𝑍𝑖𝑛 + 1)

(𝑍𝑖𝑛
∗ − 1)

(𝑍𝑖𝑛
∗ + 1)

]

=
|𝑍𝑖𝑛 + 1|2

2(𝑍𝑖𝑛 + 𝑍𝑖𝑛
∗ )

 

 

To get an idea of how we go ahead with the design of the low pass filter prototype, let us 

consider a circuit shown in the figure. Here the source as the impedance of 1 ohm and let us 

consider the cut-off frequency to be 1 radian per second, and it essentially represents a second-

order filter where we have this element L, series element L, and shunt element C and this filter 

is connected to a load resistance R. 

So for a second-order filter when the cut-off frequency is 1, in that case PLR becomes equal to 

1 plus omega to power 4. For this circuit shown here Z in can be found j omega L the reactance 

in series with parallel combination of R and C which is given here and also once we have Z in, 

the gamma looking into this network since our source impedance is normalized to unity, so 

gamma will be Zin minus 1 divided by Zin plus 1. And therefore we can write PLR, which is 

equal to 1 by 1 minus mod gamma square, and here we can substitute gamma into gamma 

conjugate, and finally it will become mod of Z in plus 1 whole square divided by 2 Z in plus Z 

in conjugate. 
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Now  

𝑍𝑖𝑛 + 𝑍𝑖𝑛
∗ = 𝑗𝜔𝐿 +

𝑅(1 − 𝑗𝜔𝑅𝐶)

1 + 𝜔2𝑅2𝐶2
− 𝑗𝜔𝐿 +

𝑅(1 + 𝑗𝜔𝑅𝐶)

1 + 𝜔2𝑅2𝐶2
=

2𝑅

1 + 𝜔2𝑅2𝐶2
 



and 

|𝑍𝑖𝑛 + 1|2 = |𝑗𝜔𝐿 +
𝑅(1 − 𝑗𝜔𝑅𝐶)

1 + 𝜔2𝑅2𝐶2
+ 1|

2

= |(
𝑅

1 + 𝜔2𝑅2𝐶2
+ 1) + 𝑗 (𝜔𝐿 −

𝜔𝑅2𝐶

1 + 𝜔2𝑅2𝐶2
)|

2

= (
𝑅

1 + 𝜔2𝑅2𝐶2
+ 1)

2

+ (𝜔𝐿 −
𝜔𝑅2𝐶

1 + 𝜔2𝑅2𝐶2
)

2

 

 

Now if we substitute the expressions for Z in and Z in n conjugate, we get Z in plus Z in conjugate 

is equal to 2R divided by 1 plus omega square R square C square. And mod of Z in plus 1 square 

can also be evaluated by substituting the expression for Z in and it comes out to be R divided 

by 1 plus omega square R square C square plus 1 whole square, plus omega L minus omega R 

square C divided by 1 plus omega square R square C square whole square. 
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∴ 𝑃𝐿𝑅 =
|𝑍𝑖𝑛 + 1|2

2(𝑍𝑖𝑛 + 𝑍𝑖𝑛
∗ )

=
1 + 𝜔2𝑅2𝐶2

4𝑅
[(

𝑅

1 + 𝜔2𝑅2𝐶2
+ 1)

2

+ (𝜔𝐿 −
𝜔𝑅2𝐶

1 + 𝜔2𝑅2𝐶2
)

2

] 

=
1

4𝑅
[𝑅2 + 2𝑅 + 1 + 𝜔2𝑅2𝐶2 + 𝜔2𝐿2 + 𝜔4𝐿2𝑅2𝐶2 − 2𝜔2𝐿𝐶𝑅2] 

= 1 +
1

4𝑅
[(1 − 𝑅)2 + 𝜔2(𝑅2𝐶2 + 𝐿2 − 2𝐿𝐶𝑅2) + 𝜔4𝐿2𝑅2𝐶2] 

On comparing with 𝑃𝐿𝑅 = 1 + (0)𝜔2 + (1)𝜔4, we get 

1 − 𝑅 = 0 ⇒ 𝑅 = 1, 

𝐶2 + 𝐿2 − 2𝐿𝐶 = 0 ⇒ (𝐿 − 𝐶)2 = 0 ⇒ 𝐿 = 𝐶 

and 

𝐿2𝑅2𝐶2

4𝑅
= 1 ⇒

𝐿2𝐶2

4
= 1 ⇒

𝐶2𝐶2

4
= 1 ⇒ 𝐿 = 𝐶 = √2 

 

 

So with mod Z in plus 1 square calculated and also Z in plus Z in conjugate calculated, once we 

substitute these 2 terms we get the expression for PLR, which is shown here. It is 1 plus omega 

square R square C square divided by 4 R into R by 1 plus omega square R square C square plus 

1 whole square plus omega L minus omega R square C divided by 1 plus omega square R 

square C square the whole square. 

Now, this can be further simplified and put in the form as shown, so the PLR is expressed in the 

form shown here. We know that PLR is an even polynomial in omega square and we saw that 



in our case when N is equal to 2, it is 1 plus omega to the power 4, so we can write it in this 

form and now if we make a term by term comparison because here for the expression for PLR 

we have omega square, we have actually 1 plus 1 by 4 R 1 minus R whole square and then a 

term which is the coefficient of omega square and another term L square R square C square 

divided by 4R which will be the coefficient of omega to the power 4. 

So we can equate them, and therefore this term has to be equal to 1, which implies that 1 minus 

R has to be equal to 0 and R equal to 1 because then only we get this term to be equal to 1. So 

our load resistance is R equal to 1. The other term when R equal to 1 we get C square plus L 

square minus 2 LC equal to 0 and therefore L minus C whole square becomes 0, which implies 

L equal to C. 

The last term L square R square C square by 4 R this becomes 1, and since R is equal to 1, we 

get L square C square by 4 equal to 1, and we have seen L equal to C. So we can solve for L 

equal to C equal to root 2. So we can see that by comparing the expression for the PLR obtained 

from the prototype circuit with that of the PLR for a binomial response, we can calculate R. We 

can calculate L and C, and this we have carried out for a filter order 2. And equal to 2, second-

order filter. 
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Now this can be done for a generic low pass prototype where we have the prototype, this 

prototype here we have R not equal to g not equal to 1 then it begins with the shunt element, 

then we have a series element, another shunt element, so we have this ladder network and 

finally g N plus 1 this is the load. And when the prototype begins with a series element, we can 



draw it as shown, and here also if required we can represent it in terms of a current source and 

a parallel source resistance. 

So these are the 2 commonly used prototypes for which the tabulated values for these g’s, that 

means g can be either C or L depending upon the prototype. It can be a series element, or it can 

be a shunt element, and the values of these g’s are tabulated. 
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So this table shows the element values for maximally flat low pass filter prototype with g 

naught equal to 1, omega C equal to 1 and we can see that we found out in our second-order 

filter L equal to C equal to root 2 which is 1.4142 and R equal to 1, so g3 is equal to 1. So, 

essentially resolved by our prototype circuit this row of the table. So for other values of N we 

can directly use these values for series and shunt elements, which means the g’s from this table. 

Here we are showing up to filter order 5, but values are also available for higher-order filter. 

Now in a practical filter, it will be necessary to determine the order of the filter. And as already 

mentioned, that usually it is dictated by the specification on the insertion loss at some frequency 

in the stopband of the filter. Suppose at 1.5 times the cut-off frequency we want an insertion 

loss of 20 dB. 

So from this type of specification we can determine what order N is required and once we can 

know N then we can choose these values g1, g2 up to gN plus 1 from the table and then we can 

find out the corresponding values for the inductors and capacitances for providing the desired 



cut-off frequency and also when the source resistance is scaled to the desired value of the source 

resistance. 
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𝐿𝑘
′ =

𝑅0𝐿𝑘

𝜔𝑐
                               𝐶𝑘

′ =
𝐶𝑘

𝑅0𝜔𝑐
 

 

So let us see what do we mean by this impedance and frequency scaling. The prototype filter 

has Rs equal to 1, omega c equal to 1, and also for maximally flat response we have seen that 

RL equal to 1. A source resistance of R naught can be obtained by multiplying all the 

impedances. 

Please note that this L and C, they will provide impedance values of omega L 1 by omega C 

and if we multiply the impedance values provided by the elements in the prototype design by 

R naught, then essentially we get the solution for those inductors and capacitors when the 

source resistance is R naught instead of 1 but still our cut-off frequency is 1. So next what we 

do? We change the cut-off frequency from unity to the actual cut-off frequency omega C for a 

low pass filter. 

So if we do that, we require to scale the frequency dependence of the filter and this is 

accomplished by replacing omega by omega C. So if we do both impedance and frequency 

scaling then the scaled values of the inductance become R naught Lk by omega C, so this is the 

series element we used and scaled value of the capacitance Ck becomes Ck by R naught omega 

C. 



And with the impedance scaling, the scaled value of the source and load resistances now 

become R naught and R naught RL. So if our original prototype we have g N plus 1 as 1 that 

means RL equal to 1 then now new value will be R naught into 1 equal to 1. So let us see how 

we utilize these concepts in designing a low pass filter, and that will actually clarify whatever 

we have discussed so far. 
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10 log10 (1 + (
𝜔

𝜔𝑐
)
2𝑁

) 

Therefore, 1.5 = log10(1 + 22𝑁).  So we get 𝑁 = 2.47 i.e. we use 𝑁 = 3 

From the table, 𝑔1 = 1    𝑔2 = 2      𝑔3 = 1 

 

 

So we consider the example of a design of a Low Pass Butterworth Filter. So let us consider a 

maximally flat filter that has cut-off frequency of 2 gigahertz, and the filter provides at least 15 

dB attenuation at 4 gigahertz. The source and load impedances are 50 ohm. So first thing we 

need to do is to determine the order of the filter. So from the expression for PLR we have seen 

that at an angular frequency omega, the attenuation of the filter in dB is 10, log 10 1 plus omega 

by omega c raised to the power 2N. So this is the attenuation of the filter, and therefore in our 

case, omega c is 2 gigahertz, and we want 15 dB attenuation at 4 gigahertz. 

So we can write 15 by 10, which is 1.5 is equal to log of 1 plus omega by omega c become 2, 

so 2 to the power 2N. If we solve for capital N, we get N is equal to 2.47 and therefore we use 



N equal to 3, that means a third-order filter and the table which we have just discussed from 

there we see that g1 is equal to 1, g2 equal to 2 and g3 equal to 1 for a third-order filter. 
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And therefore we can draw the circuit of the filter with 50 ohms source resistance and 50 ohm 

load resistance, and by applying frequency and impedance scaling, we can find out C1 to be 

equal to 1.5915 pF. So the shunt capacitor, first capacitor is and L2 the series inductance it is 

7.9577 Nano Henry, and since we have g1 equal to 1 equal to g3, C3 the next shunt capacitor is 

also 1.5915 pF. So this completes the design of the filter determining the values of inductances 

and capacitances that would be required to get an attenuation of 15 dB, at least 15 dB at 4 

gigahertz. 

Now how do we realize this capacitor and inductor values that come under implementation? 

So we have seen how we can design maximally flat low pass filters. In the next lecture we will 

discuss how we can design equal ripple filters and the procedures involved in designing the 

prototype equal ripple filters. Once the low pass filter prototypes are designed, then depending 

upon the requirement, if we want a high pass filter we need to perform low pass to high pass 

transformation. 

Similarly, low pass to bandpass or bandstop transformation. So in our next lecture, we will see 

how these transformations are performed. 


