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In the previous class, we discussed about some basics of transmission line and we have seen 

that a short section of transmission line can be represented in terms of its lumped equivalent 

circuit. In this lecture will cover the following- the Telegraphers equation, the wave 

propagation on a transmission line, then we will cover the lossless transmission line and then 

terminated lossless transmission line and finally special cases of terminated lossless lines. 
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So, we start with Telegraphers equations, how he developed this equations. We have seen 

that the lumped elements circuit model of a short section of transmission line can be 

represented by the equivalent circuit as shown here, if we apply Kirchhoff's of voltage law 

and current law on this circuit, then we get a set of equations relating the current and voltage 

on the line. So, this is the equation where voltage is related to the current and the resistance, 

inductance, capacitance, and conductance of the equivalent circuit model. 

Similarly, we can, if we apply KCL here we can get another equation. Please note that both 

the equation we get after the application of the KVL and KCL, these equations represents 

voltages and currents which are both function of distance 𝑍 and time 𝑇. 
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If you rearrange the previous equations we get, and similarly for the current equation, these 

two sets of equation now can be divided on both sides by ∆𝑧 and as ∆𝑧 → 0, we get the 

following sets of equations. Now these equations are known as Telegrapher’s equation. It 

may be noted that the special derivative of the voltage in the first equation is related to the 

time derivative of current. Similarly, the space derivative of the current in the second 

equation is related to the time derivative of voltage. So this, in one way these equations, they 

are coupled and we have both voltage and current present in this equation. 
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Now let us see how we can infer wave propagation on a transmission line. The voltage 𝑣 and 

𝑖 which are function of distance 𝑧 and time 𝑡 can be expressed in terms of phasors, the 

instantaneous line voltage and current can be a expressed as 𝑣(𝑧,𝑡) is equal to real part of a 



voltage phasor which is a function of position 𝑧 multiplied by 𝑒𝑗𝜔𝑡. Similarly, 𝑖(𝑧, 𝑡)  is the 

real part of a current phasor 𝐼(𝑧) multiplied by 𝑒𝑗𝜔𝑡. 

Now the voltage and current on the transmission line can be expressed exclusively in the 

form of phasors and we note that the 
𝜕

𝜕𝑡
𝑒𝑗𝜔𝑡 contribute this term 𝑗𝜔. So from these two 

equations we get the following phasor equations  

𝑑𝑉(𝑧)

𝑑𝑧
= −(𝑅 + 𝑗𝜔𝐿)𝐼(𝑧) 

and  

𝑑𝐼(𝑧)

𝑑𝑧
= −(𝐺 + 𝑗𝜔𝐶)𝑉(𝑧) 
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Now if you notice here the space derivative of the voltage is related to current phasor, 

similarly the special derivative of the current phasor is related to the voltage phasor. Now we 

can decoupled these two equation to form the wave equation for the voltage and current. So if 

you take derivative on both sides of this equation and substitute 
𝑑𝐼(𝑧)

𝑑𝑧
 from here, then we can 

write 
𝑑2𝑉(𝑧)

𝑑𝑧2  is 𝛾2𝑉(𝑧). 

So in this equation, we find that it is only the voltage phasor 𝑉 is involved and rearranging 

the term, we can write of this form, 
𝑑2 𝑉(𝑧)

𝑑𝑧2 − 𝛾2 𝑉(𝑧) = 0, where 𝛾 which is equal to 

√(𝑅 + 𝑗𝜔𝐿)(𝐺 + 𝑗𝜔𝐶) is the complex propagation constant and can be written as 𝛼 + 𝑗𝛽. 

We can also in the same manner form the wave equation for the current. 
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Now solution to this wave equations are of the form 𝑉(𝑧) = 𝑉0
+ 𝑒−𝛾𝑧 + 𝑉0

−𝑒𝛾𝑧. Similarly, 

𝐼(𝑧) = 𝐼0
+𝑒−𝛾𝑧 + 𝐼0

−𝑒𝛾𝑧. Here we find that 𝑒−𝛾𝑧  and 𝑒𝛾𝑧 represent wave propagation in 

positive 𝑧 and negative 𝑧 direction, respectively. 
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We can also find an alternative form of 𝐼(𝑧), which is found as follows, we have 
𝑑𝑉(𝑧)

𝑑𝑧
=

−(𝑅 + 𝑗𝜔𝐿)𝐼(𝑧). If you substitute the equation for 𝑉(𝑧) and rearrange the terms, then we get 

𝐼(𝑧) =
𝛾

(𝑅+𝑗𝜔𝐿)
(𝑉0

+𝑒−𝛾𝑧 − 𝑉0
−𝑒𝛾𝑧). And this can be written as 𝐼(𝑧) =

1

𝑍0

(𝑉0
+𝑒−𝛾𝑧 − 𝑉0

− 𝑒𝛾𝑧), 

where 𝑍0 we are defining as 
𝑅+𝑗𝜔𝐿

𝛾
. 



If we compare this expression for 𝐼(𝑧) with the earlier expression that we derived, that means 

𝐼(𝑧) = 𝐼0
+𝑒−𝛾𝑧 + 𝐼0

−𝑒𝛾𝑧, then this characteristic impedance 𝑍0 of the transmission line can be 

defined as 
𝑉0

+

𝐼0
+ = 𝑍0 =

−𝑉0
−

𝐼0
− . Now in terms of the parameters of the transmission line 𝑍0 =

𝑅+𝑗𝜔𝐿

𝛾
= √

𝑅+𝑗𝜔𝐿

𝐺+𝑗𝜔𝐶
, if we substitute the expression for 𝛾. It may be noted that 𝑍0 is a function of 

the operating angular frequency 𝜔. 

(Refer Slide Time: 11:01)  

 

If we come back to the time domain form, then we can write 𝑉 as a function of 𝑧 and 𝑡 as real 

part of voltage phasor 𝑉(𝑧)𝑒𝑗𝜔𝑡, and substituting expression for 𝑉(𝑧), writing 𝛾 = 𝛼 + 𝑗𝛽 we 

get this equation, and then expressing 𝑉0
+ and 𝑉0

− in their magnitude and phase form, we get 

this form of representation of 𝑣(𝑧,𝑡) , retaining only the real part of this equation, we can 

write the voltage on the transmission line as a function of 𝑧 and 𝑡 given by |𝑉0
+ | cos(𝜔𝑡 −

𝛽𝑧 + ∅+)𝑒−𝛼𝑧 + |𝑉0
−|cos(𝜔𝑡 + 𝛽𝑧 + ∅−)𝑒𝛼𝑧 .  

∅+ and ∅− is the phase angle of the complex voltage 𝑉0
+ and 𝑉0

−. The first term represents a 

wave which is travelling in the +z direction. Similarly, the second equation represents a wave 

travelling in the -z direction. We consider a simple case where we assume that 𝛼 = 0, that 

means the wave does not attenuate as it propagates, further 𝑉0
+ phase angle ∅+ is 0. 

So with this assumption, let us now plot this first equation, we can see that 𝑡 equal to 0, this 

equation as a function of 𝑧 can be plotted as shown and let us follow the moment one 

particular point on this wave which is marked here. So at 𝑡 equal to T/4, we find that the point 



moves towards +z direction. Similarly at equal to T/2, that means half the time period, the 

point has moved further and it continues. So this equation essentially represents a wave 

which is travelling in the +z direction and here in this case we have considered the wave does 

not attenuate.  
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The phase velocity of the wave is given by 
𝜔

𝛽
 and this is equal to 𝜆𝑓 and also the wavelength 

on the line is given by 
2𝜋

𝛽
 which we see from this relation. 
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Now we consider a special case of a lossless line, for a lossless transmission line will 

have 𝑅 = 0, 𝐺 = 0 and if we put this values, then in the expression for the propagation 

constant we get gamma become 𝑗𝜔√𝐿𝐶. Therefore, 𝛼, the attenuation constant becomes 0 

and 𝛽, the phase constant becomes 𝜔√𝐿𝐶. The characteristic impedance wavelength and 

phase velocity of the lossless line can be expressed as 𝑍0 becomes √
𝐿

𝐶
 and now it is not a 

function of 𝜔, 𝜆 is 
2𝜋

𝛽
 which can be written as 

2𝜋

𝜔√𝐿𝐶
 and phase velocity 𝑣𝑝, which is 

𝜔

𝛽
 

becomes 
𝜋

√𝐿𝐶
 Now for a lossless transmission line when 𝛼 = 0, the voltage and current 

phasors can be written as shown in these two equations. 
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We consider a particular case of a terminated lossless transmission line, here we see that the 

lossless transmission line having characteristic impedance 𝑍0 and phase constant 𝛽 is 

terminated to a load impedance 𝑍𝐿, 𝑉𝐿  represents the voltage across the load and 𝐼𝐿 is the 

current flowing through the load, please note that the reference distance 𝑧 is equal to 0 is 

considered to be at load location and then the distances are calculated from the load towards 

the source which excites the line. 

Now this particular problem illustrates a fundamental property of distributed system, the 

wave reflection in the transmission. So we assume the voltage at 𝑧 less than 0 is incident from 

a source and it sets up a waveform 𝑉0
+𝑒−𝑗𝛽𝑧  propagating in the +Z direction. So this voltage 

when moves from this line, finally reaches the load and it sees a difference in the impedance 

and this results into a reflected wave, which travels back towards the source. So we have seen 

that the voltage on a transmission line and the current can be written in the forms as shown. 
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Now if you consider at 𝑧 is equal to 0, then the load impedance 𝑍𝐿 becomes 
𝑉0

𝐼0
 and 

substituting 𝑧 is equal to 0 in the expression for the voltage and current, we get 
𝑉0

++𝑉0
−

𝑉0
+−𝑉0

− 𝑍0. 

And from this equation if we solve for 𝑉0
− then we get 𝑉0

− is 
𝑍𝐿 −𝑍0

𝑍𝐿 +𝑍0
𝑉0

+. Thus the voltage 

reflection coefficient, we defined as 
𝑉0

−

𝑉0
+ , this is the reflected voltage at the load and this is the 

incident voltage at the load and their ratio of the reflected voltage to incident voltage is the 

reflection coefficient and we can find this gamma reflection coefficient to be 
𝑍𝐿 −𝑍0

𝑍𝐿 +𝑍0
. So given 

the load and the characteristic impedance which and find out the reflection coefficient at the 

load. 
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Now, once we introduced this reflection coefficient gamma, we can rewrite the expression for 

the voltage and current, where 𝑉0
− is replaced by 𝑉0

+ into Γ and 𝑉0
+ is taken out. So we have 

the expression for the voltage and current as shown, now we can see that the voltage and 

current on the line is the superposition of incident and reflected wave and when both incident 

and reflected wave are present on the line it give rise to standing wave. 

Please note that the reflected wave will vanish for Γ equal to 0, and the condition to achieve 

this is 𝑍𝐿 is equal to 𝑍0, then Γ will become 
𝑍𝐿 −𝑍0

𝑍𝐿 +𝑍0
 equal to 0 and this particular condition, 

when the load impedance is same as that of the characteristic impedance of the line, this 

condition is called the matched condition. 
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The average power flow along the line at any distance 𝑧 is given by 𝑃𝑎𝑣𝑔 =
1

2
𝑅𝑒(𝑉(𝑧)𝐼(𝑧)∗) 

and once you substitute the expression for the voltage and current phasors in terms of the 

forward and the incident and the reflected waves, we can write this equation, and then we can 

further simplify it and get a form which is shown here. Please note that in this expression the 

two middle terms when combined they give rise to an imaginary term and this term can be 

dropped and retaining only the real part we get average power to be equal to 
1

2

|𝑉0
+|

2

𝑍0

(1 −

|Γ|2). 
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Return loss is the power lost due to the load mismatch and it is given by 𝑅𝐿 =

−20 log10|Γ| dB . For a matched load Γ is equal to 0 and 𝑅𝐿 is infinity, there is no reflected 

power. Similarly, when Γ is equal to 1, that means the entire power is reflected, written loss is 

0 dB. For a passive network, the return loss is non-negative number. 
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For a mismatched load, we can write 𝑉(𝑧) is equal to 𝑉0
+ (𝑒−𝑗𝛽𝑧 + Γ𝑒𝑗𝛽𝑧) and if you take the 

magnitudes of voltage, then we can write magnitude of 𝑉(𝑧) is equal to |𝑉0
+||1 + Γ𝑒2𝑗𝛽𝑧|. 

Now if you consider at a distance 𝑧 is equal to −𝑙, then we can substitute this 𝑧 by −𝑙 and we 

get this expression.  

And finally when gamma is replaced by its magnitude and phase term, we get magnitude of 𝑉 

at a distance 𝑧 is equal to −𝑙 to be |𝑉0
+||1 + Γ𝑒−2𝑗𝛽𝑙|, where theta is the phase angle of the 

reflection coefficient. 
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We can see that from the previous equation, the voltage magnitude it will vary with 𝑧 and the 

voltage magnitude oscillates with position along the line and from this equation |𝑉(𝑧 = −𝑙)| 

is equal to |𝑉0
+||1 + |Γ|𝑒𝑗(𝜃−2𝛽𝑙) |. We find that when the phase term becomes 0, in that case, 

we get the maximum value of voltage and we denote it by 𝑉
𝑚𝑎𝑥

 and   𝑉𝑚𝑎𝑥 = |𝑉0
+ |(1 + |Γ|). 

Similarly, when this term it becomes 𝜋, this phase term will become −1 and will get   𝑉𝑚𝑖𝑛 is 

equal to |𝑉0
+|(1 − |Γ|). So the voltage depending upon the position on the line we will keep 

changing between 𝑉𝑚𝑎𝑥  and   𝑉𝑚𝑖𝑛, please note that the magnitude of the reflection coefficient 

becomes 1, when the load is a short-circuit or it is an open circuit, for both this cases the 

reflection coefficient magnitude will become 1, but the differences that when it is a short-



circuit the voltage minima will be 0 because magnitude of reflection coefficient is 1 and it 

will be formed on the load location, whereas for an open circuited line a voltage maxima will 

be formed on the load location. 

We introduced a term which is called voltage standing wave ratio and this is a measure of the 

mismatch of the line and we define VSWR is equal to 𝑉𝑚𝑎𝑥  by   𝑉𝑚𝑖𝑛 which is given by 
1+|Γ|

1−|Γ|
. 

VSWR is a real number. It lies in the range 1 to infinity, VSWR is equal to 1 corresponds to 

perfect matching, there is no reflected wave that means gamma is 0 and VSWR tending to 

infinity gives perfect mismatch, that means all the power is reflected.  

Please note that, a line terminated to a short-circuit or an open-circuit represents such 

conditions when VSWR becomes infinity because in both the cases mod gamma will become 

1 and VSWR will approach infinity. So when we have voltage variation on the line between 

this 𝑉𝑚𝑎𝑥  and   𝑉𝑚𝑖𝑛, the distance between the successive maxima or minima on the line is 
𝜆

2
, 

while the distance between a maximum and minimum on the line is 
𝜆

4
. 
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So at a distance is 𝑙 = −𝑧 from the load, the input impedance towards the load is given by if 

you substitute 𝑉 with 𝑧 is equal to −𝑙 and then we take the ratio of voltage at 𝑧 is equal to −𝑙 

and current and 𝑧 is equal to −𝑙, then we get this expression. Now we substitute the value of 

reflection coefficient gamma, then we can write 𝑍𝑖𝑛, in this form and when this terms are 

arranged we get the final form of the equation as 𝑍𝑖𝑛 =
𝑍𝐿 +𝑗𝑍0 tan 𝛽𝑙

𝑍0 +𝑗𝑍𝐿 tan 𝛽𝑙
𝑍0. So this is a very 



important equation and it gives the input impedance that will be seen at a distance 𝑙 from the 

load looking towards the load and this is the transmission line impedance equation. 
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Let us now consider some special cases of terminated lines. As shown here we have 𝑍𝐿 set to 

0, this particular case is the case of short-circuited transmission line and in this case, the 

reflection coefficient gamma will become minus 1, VSWR on the line is infinite. So we can 

obtain the voltage and current on the line as once we replaced the reflection coefficient 

gamma is equal to minus 1, the voltage expression becomes like this, similarly the current 

expression becomes as shown in the figure. 

Now if you consider at a distance −𝑧 is equal to 𝑙, so we can write 𝑉(𝑧 = −𝑙) =

𝑉0
+(𝑒𝑗𝛽𝑙 − 𝑒−𝑗𝛽𝑙) and this term can be rearranged and finally we find that voltage as a 

function of distance 𝑙 can be written as 2𝑗𝑉0
+ sin(𝛽𝑙). 
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Therefore, the voltage 𝑉 divided by 2𝑗𝑉0
+ is equal to sin(𝛽𝑙). In the same manner we can find 

out the expression for the current at a distance 𝑙 from the load and this current at a distance 𝑙 

from the load can be written as 
2𝑉0

+

𝑍0
cos(𝛽𝑙). And therefore the input impedance seen at a 

distance 𝑙 from the load can be written as 𝑍𝑖𝑛 is equal to 𝑗𝑍0 tan 𝛽𝑙 and you can see that the 

same expression if you of the impudence if you get, if you divide voltage expression at a 

distance of 𝑙 from the load divided by the corresponding current expression. 
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Now this voltage current and input impedance variation is plotted along the line for different 

distances from the load. So we find that the voltage variation gives a sin(𝛽𝑙) variation and 



therefore you can see that the voltage minima since it is a short-circuited line occurs at the 

locations of 𝑍𝐿 and then voltage reaches its maxima and then at a distance of 
𝜆

2
, it becomes 

minimum again. Whereas if you look at the current expression, the current on the line at a 

distance 𝑙 from the load varies as cos(𝛽𝑙). 

So the short-circuit point, that means at the load location we have the maximum current and 

then it decreases to its minimum value at a distance of 
𝜆

4
 from the load and it can be seen that 

when the voltage is maximum the current that is its minima. The impedance variation is given 

by of the form of tan(𝛽𝑙) and if we write input impedance is purely imaginary and if we 

write X in by 𝑍0, then we see that the variation it is initially inductive till the length is 
𝜆

4
, that 

it becomes capacity, then it becomes inductive again. So this is how a short-circuit terminated 

line will behave in terms of voltage, current, and impedance variation. 
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Let us discuss another case of terminated line. In that case we considered 𝑍𝐿 to be infinity, 

that means it is the case when the transmission line is transmitted to an open circuit. And in 

this case we can write the reflection coefficient at the load Γ to be equal to Γ =
1−𝑍0/𝑍𝐿

1+𝑍0/𝑍𝐿
 and 

when 𝑍𝐿tends to ∞ in the limiting case the gamma will become 1, once again, the VSWR will 

become ∞. 



The voltage and current on the line now we can obtain as, here we can see that if the Γ has 

been replaced by plus 1 here and rewriting this expressions for a distance L from the load, we 

can find that 𝑉 at a distance of 𝑙 from the load is 2𝑉0
+ cos(𝛽𝑙). 
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And similarly, if we find out the current, the current at a distance 𝑙 from the load can be 

found to be 
2𝑗𝑉0

+

𝑍0
sin(𝛽𝑙). And the input impedance once again, if you calculate 𝑉/𝐼 at a 

distance 𝑙 from the load 𝑧 in becomes −𝑗𝑍0 cot 𝛽𝑙. 
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As before, we plot the voltage, current and impedance variation along the line when the line 

is terminated to an open circuit and we find that in this case, the voltage variation is given by 

cos(𝛽𝑙) and a voltage maxima occur at the load location, whereas a current minimum occurs 

at the load location because no current flows through the open circuit and the impedance 

becomes purely imaginary and X in by 𝑍0 as you can see for line length less than 
𝜆

4
, it is 

negative. So it is capacitive and then it becomes inductive from 
𝜆

4
 to 

𝜆

2
 and this varies 

periodically over the length of the line. 
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Let us now come to other special case where we consider a junction two transmission lines 

with different characteristic impedances. So we can see that the line shown in blue has a 

characteristic impedance 𝑍0 and it is connected to another line having a characteristic 

impedance 𝑍1. So the reflection coefficient at the junction if we compute looking from this 

line it will be given by 
𝑍1 −𝑍0

𝑍1 +𝑍0
 and the voltage wave on the line now can be written as. 

So will have the incidence voltage 𝑉0
+𝑒−𝑗𝛽𝑧  and the reflected voltage 𝑉0

+ 𝑒𝑗𝛽𝑧 which is 

travelling in the −𝑧 direction and both this waves will exist in this part of the line for 𝑧 < 0. 

When it comes to the wave propagation in the other part of the line, we find that the part of 

the voltage that is transmitted to the second line, that means for 𝑧 > 0 can be written as 𝑉(𝑧) 

is equal to 𝑉0
+𝑒−𝑗𝛽𝑧 into a transmission co-efficient 𝑇. 



And if we consider the fact that the voltages at the two sides of these junction has to be same, 

that means at 𝑧 is equal to 0, then we will get 1 + Γ will be equal to 𝑇 and if we substitute the 

expression for gamma in that case, we get 𝑇 is equal to 
2𝑍1

𝑍1+𝑍0
. Now it is also termed as 

insertion loss and it is given by insertion loss is equal to −20 log10|𝑇| dB. 
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We continue with the junction of two transmission line with different characteristic 

impedances and we see that if we have a transmission line of length 𝑙 is equal to 
𝜆

2
, then 𝑍𝑖𝑛 

becomes equal to 𝑍𝐿. We have seen that the input impedance of a lossless line terminated to 

an impedance 𝑍𝐿 is given by 
𝑍𝐿 +𝑗𝑍0 tan 𝛽𝑙

𝑍0+𝑗𝑍𝐿 tan 𝛽𝑙
𝑍0 . 



Now, depending upon the location where the input impedance is observed, we find that if 𝑙 is 

equal to 
𝜆

2
, then 𝑧 in becomes equal to 𝑍𝐿 and a half wavelength or any multiple of 

𝜆

2
 does not 

transform the load impedance, regardless of the characteristic impedance of the line. So this 

is a property that if we take a transmission line of length to 
𝜆

2
, or multiples of 

𝜆

2
, in that case, 

the input impedance seen is same as the load impedance. 

We consider another case when the transmission line is an odd multiple of 
𝜆

4
 in length. So in 

this case we get using this equation 𝑧 in becomes equal to 
𝑍0

2

𝑍𝐿
. So for a transmission line, this 

type of transmission lines sections which are of quarter wavelength are known as quarter 

wave transmission line and can transfer the load impedance in an inverse manner depending 

upon the characteristic impedance value, the properties of quarter wave transformer will 

study in detail later. 
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So we have discussed the various issues related to the wave propagation in a lossless 

transmission line. We have seen the special cases when the lossless line is terminated to a 

short-circuit or an open circuit. Similarly, we have seen the impedance transformation 

property of half wave transmission line, quarter wave transmission line. In the next lecture we 

will see transmission line having loss, in fact we will cover the lossy transmission line 

particularly when the loss is small. Then we will consider another special case which is called 

the distortion less line and finally we will conclude our discussion in that lecture by 

considering the terminated lossy lines.  


