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In the previous lecture, we discussed about the wave propagation in a transmission line and 

particularly focused on the characteristics of lossless line.  
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In this lecture we discussed about the lossy transmission line, we discussed about a special form 

of lossy line which is called Distortionless line and we also discuss the Terminated lossy lines.  
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So, we have already seen that for a transmission line, the complex propagation constant is given 

by, 𝛾 is equal to 𝛼 + 𝑗𝛽, here this component 𝛼 actually attenuates the wave as it propagates and 

𝛽 is the phase constant. So, that is why we called 𝛼 is the attenuation constant and 𝛽 is the phase 

constant. Now, if we square this equation on both sides we can write, (𝛼 + 𝑗𝛽)2 is equal to 

(𝑅 + 𝑗𝜔𝐿)(𝐺 + 𝑗𝜔𝐶).  

Now, if we expand these equations and write both the left and right hand side in the form of real 

and imaginary parts and then if we equate these real and imaginary parts we get (𝛼2 − 𝛽2 ) is 

equal to (𝑅𝐺 − 𝜔2𝐿𝐶) and 2𝛼𝛽 is equal to (𝜔𝐿𝐺 + 𝑅𝜔𝐶).  
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So, this is the real and imaginary part separated. Once we have this form, we have two unknowns 

alpha and beta to be calculated in terms of the line parameters that is 𝑅, 𝐺, 𝐿, and 𝐶 and also 

frequency 𝜔. So, if I solve these equations we get the solutions for 𝛼 and 𝛽, and these are the 

general solution for 𝛼 and 𝛽 in a lossy line.  
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Now what happens in practical cases, the transmission line losses are usually small and when we 

are using short section of transmission line essentially the signal attenuation will not be much 

and some approximation can be made to simplify the expression for the parameters 𝛾 and  𝑍0, for 



the case of no loss line. So, we can rewrite the propagation constant in this form and which can 

be re-written in the form shown where we have 𝑗𝜔√𝐿𝐶 that is taken out and we have written in 

the form 
𝑅

𝜔𝐿
, 

𝐺

𝜔𝐶
. 

For the low loss case we assume that at the operating frequency 𝑅 is very very small compared to 

𝜔𝐿 and 𝐺  is very small compared to 𝜔𝐶 . And therefore this product term 
𝑅𝐺

𝜔2 𝐿𝐶
 will be even 

smaller and as compared to one it can be neglected. Then once we neglect this term and for the 

remaining term we applied Taylor series approximation and retain only the significant terms, 

then we can write 𝛾, the propagation constant, approximately 𝑗𝜔√𝐿𝐶√1 −
𝑗

2
(

𝑅

𝜔𝐿
+

𝐺

𝜔𝐶
).  

So, now what we can do, we can find out the real and imaginary parts of this equation and from 

there we find that, 𝛼 is 
1

2
(𝑅√

𝐶

𝐿
+ 𝐺√

𝐿

𝐶
) and 𝛽 is 𝜔√𝐿𝐶.  
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So, if we look at the expression for 𝛼 and 𝛽, we find that attenuation constant 𝛼 now does not 

depend upon 𝜔, it depends only on the transmission line parameters and the phase constant 𝛽 

varies linearly with 𝜔. And characteristic impedance 𝑍0 for such line can also be found out and 



we write 𝑍0 is equal to √
𝐿

𝐶
√

𝑅

𝑗𝜔𝐿
+1

𝐺

𝑗𝜔𝐶
+1

 and this 
𝑅

𝑗𝜔𝐿
 with respect to 1 will be very small similarly, 

𝐺

𝑗𝜔𝐶
 

that term also will be very small compared to 1 and 𝑍0 can be approximated as √
𝐿

𝐶
.  
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Now we come to a very special case of transmission line which is known as Distortionless line. 

So we have seen in general 𝛼 and 𝛽 for a transmission line are complicated function of 𝜔 the 

angular frequency. When 𝛼 varies with 𝜔  different frequency components of a signal if it is 

present will get attenuated to different extent. Similarly, if 𝛽 is not a linear function of 𝜔 that is 

of this form 𝛽 is equal to some a𝜔.  

The phase velocity 𝑣𝑝 which is given by 
𝜔

𝛽
 of the individual frequency components will vary 

giving rise to dispersion. So, we find that, if alpha is varying with 𝜔  and 𝛽  is not a linear 

function of 𝜔, in that case both the attenuation and the phase velocity for different frequency 

component will be different. However, a special condition exists for a lossy line that can have 

attenuation constant independent of frequency and phase constant varying with 𝜔 linearly. And 

these type of lines, if we can realize, they will not distort the signal and therefore this type of 

lines are called Distortionless line. 
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So, let us assume that the transmission line parameters we have designed in such a way that they 

satisfy the condition 
𝑅

𝐿
 is equal to 

𝐺

𝐶
. So, we have designed the transmission line to satisfy this 

requirement. In that case we once again write 𝛾 the propagation constant in this form where we 

have the terms 
𝑅

𝑗𝜔𝐿
 and 

𝐺

𝑗𝜔𝐶
. Then since, 

𝑅

𝐿
 is 

𝐺

𝐶
 we can club these two terms and we get (1 −

𝑗 (
𝑅

𝜔𝐿
))

2

.  

And therefore, 𝛾 expression now simplifies to 𝑗𝜔√𝐿𝐶 (1 − 𝑗 (
𝑅

𝜔𝐿
)). So if we compute the 𝛼 and 

𝛽 the real and imaginary part of 𝛾, we get 𝛼 to be equal to R,C by L 𝑅√
𝐶

𝐿

 and 𝛽 equal to 𝜔√𝐿𝐶. 

So, we find that 𝛽 is now varies linearly with 𝜔 and 𝛼 does not contain any 𝜔 term. So this is a 

specific condition in a transmission line and if this condition can be achieved then there would 

not be any distortion of the signal.  

Please note that although, we are considering in terms of the single frequency 𝜔, when a signal is 

transmitted this signal will have multiple frequency, more than one frequencies, practical signal 

which are used for communication and if this condition is satisfied then all frequency 



components of that signal will be attenuated, there strength will be reduced but they will be 

attenuated equally.  

Similarly, the phase shift beta being a linear function of 𝜔 will result in to phase velocity which 

same for all the frequency components of the signal. So, the signal waveform will not get 

distorted. And that is why we call this type of transmission line having this property of 
𝑅

𝐿
 is equal 

to 
𝐺

𝐶
 as Distortionless line. 
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With this condition 
𝑅

𝐿
 is equal to 

𝐺

𝐶
 is satisfied, let us see what happens to the characteristic 

impedance 𝑍0, of the line. The characteristic impedance 𝑍0is defined as √
𝑅+𝑗𝜔𝐿

𝐺+𝑗𝜔𝐶
. Now we can 

write this expression in to the form shown where we find that in the numerator under the root 

𝑅 + 𝑗𝜔𝐿 is same as 𝐺 + 𝑗𝜔𝐶 in the denominator. And these two terms will get cancel, finally we 

get 𝑍0 equal to √
𝐿

𝐶
. And characteristic impedance becomes real and is very same as that of the 

Lossyless line. So, this is an interesting property of the characteristic impedance of the 

Distortionless line.   
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So, let us now consider another case when a transmission line having a propagation constant 𝛾 

and characteristic impedance 𝑍0, is terminated to a load impedance 𝑍𝐿. We set that reference 

distance 𝑧 is equal to 0 on the load itself and we see what happens at a distance 𝑧 is equal to −𝑙.  

So, the expression for voltage and current wave on this lossy line can be given as, here, 𝛤 is the 

reflection co-efficient at the load and we have seen that 𝛤 is equal to 
𝑍𝐿 −𝑍0

𝑍𝐿 +𝑍0
. Now, if you are 

interested to know the reflection coefficient at a distance 𝑙  from the load going towards the 

negative 𝑧  direction, then we can write Γ(𝑙)  is equal to 𝛤  the load reflection coefficient 

multiplied by 𝑒−2𝛾𝑙 and this can be written in this form and therefore the |Γ(𝑙)| will be |Γ|𝑒−2𝛼𝑙 .  
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We can compute the input impedance of a lossy transmission line as follows, we consider a 

distance 𝑙 from the load and we can write 𝑍𝑖𝑛 to be equal to 𝑉(𝑧 = −𝑙) divided by 𝐼(𝑧 = −𝑙) 

and then we substitute the equations for the voltage and current and then replacing the reflection 

coefficient 𝛾 expression by 
𝑍𝐿 −𝑍0

𝑍𝐿 +𝑍0
 and reorganizing the terms we get in this form.  

And finally we find that the input impedance expression comes in terms of hyperbolic functions 

and from this stage if we divide by 2 cosh 𝛾𝑙  we get a more compact form of the input 

impedance of a lossy transmission line which is given by 𝑍𝑖𝑛 is equal to 𝑍0
𝑍𝐿 +𝑍0 tanh 𝛾𝑙

𝑍0+𝑍𝐿 tanh 𝛾𝑙
. Please 

note that when 𝛼 equal to 0 then this tanh 𝛾𝑙 will be tanh 𝑗𝛽𝑙 and which can be finally written as 

𝑗 tan 𝛽𝑙, from this expression we will get the expression for the input impedance of the line that 

we derive for the Lossless case.  
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Let us now consider the power in a terminated lossy line. The power that is delivered to the input 

of the terminated line at the position 𝑧 = −𝑙 can be written as 𝑃𝑖𝑛 equal to half real part o f  

𝑉(𝑧 = −𝑙) 𝐼∗(𝑧 = −𝑙). And when we substitute once again the expression for the voltage and 

the current then we can get and only retain the real part, we get the expression for the input 

power at Z is equal to minus L.  

And this is been written in this particular form. Now if we use our earlier relation of  Γ(𝑙) =

|Γ|𝑒−2𝛼𝑙 , we can represent, here please note in the previous equation the power is in terms of 

reflection coefficient gamma at the load, whereas in this expression the power is in terms of the 

reflection coefficient at (𝑧 = −𝑙).  
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So, once we get the input power, we proceed to calculate the power that is delivered to the load, 

this is given by 
1

2
𝑅𝑒{𝑉(𝑧 = 0)𝐼∗(𝑧 = 0)} and we can write this as  

|𝑉0
+ |

2

2
(1 − |Γ|2), where have 

the Γ is the load reflection coefficient.  

The difference in the power corresponds to the power lost in the line. Please note that in Lossless 

case we have power only delivered the load, but in case of lossy transmission line as the wave 

propagates because of this attenuation factor alpha, some power will be dissipated throughout the 

line and whatever power we compute at (𝑧 = −𝑙) and the power that we compute at the load 

position. So, if we take the difference of these two power, that will be giving as the power lost in 

the line. So, 𝑃𝑙𝑜𝑠𝑠  is p in expression which we have already computed minus 𝑃𝐿 and this can be 

found out by substituting the expressions for 𝑃𝑖𝑛 and 𝑃𝐿. And after rearranging these terms we 

can write the 𝑃𝑙𝑜𝑠𝑠 into two components. The first component it gives the power lost by the 

incident wave, and the second component is the power lost by the reflected wave.  

So, in a transmission line we will have both the waves present and both incident and the reflected 

wave, because of the attenuation in the line we will lose power and these two expressions 

account for the power lost by the incident and the reflected component of the wave.  

𝑃𝐿 is the load power which is finally delivered and 𝑃𝑙𝑜𝑠𝑠   is the total power loss because of the 

incident and reflected wave. So this brings us to the end of our discussion about the lossy line.  
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In the next lecture we are going to cover, what is known as Smith chart? The basics of smith 

chart. Smith chart is a widely used graphical tool for solving transmission line problems and in 

the next class we will discuss about the Smith chart. 


