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In the previous lecture, we have seen the wave propagation in a rectangular waveguide, we 

have seen how TE and TM modes propagate, we have also derived expressions for the electric 

and magnetic field components of such waves. We have also derived the expressions for the 

cut-off frequencies of such modes in a rectangular waveguide. In this lecture, we consider a 

different type of waveguide, which is a circular waveguide. 

A circular waveguide has a circular cross-section for such waveguides we will see how wave 

propagation takes place. We will derive the expression for the electric and magnetic field 

components of TE and TM modes in such circular waveguides. We will also derive the 

expression for the cut-off frequencies for the TE and TM modes in such waveguide. 
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So, we start our discussion on the circular waveguide. 
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Let us consider a circular waveguide of inner radius a as shown in the figure. 

As in the case of rectangular waveguide, we express the transverse field components 𝐸𝜌, 𝐸𝜙, 

𝐻𝜌 and 𝐻𝜙 components in terms of 𝐸𝑧 and 𝐸𝑧 

In the cylindrical coordinate 𝛻 × �⃗� = −𝑗𝜔𝜇�⃗⃗�  can be written as: 
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And let us consider a circular waveguide of inner radius a as shown in the figure, here you can 

see that the wave propagation is assumed to take place along Z direction the waveguide will 

guide the energy in the Z direction and since this is a cylindrical waveguide of circular cross-

section we will have to use the cylindrical coordinate and rho, phi and Z these three coordinates 

will have to use for developing the equations for this type of circular waveguide. 

And as in the case of a rectangular waveguide, here also what we do the procedure is similar. 

We express the field components transverse field components, which are E rho E phi H rho 

and H phi components. In terms of E z and H z and then we will try to solve for E z and H z 

by applying the boundary condition. In the cylindrical coordinate, this equation curl of E is 

equal to minus j omega mu H can be written as 1 by rho arrow rho phi a z del del rho; del del 

phi; del del Z; E rho, rho E phi, E z and this is the left-hand side and right-hand side we expand 

it in terms of H rho H phi and H z. 

Now, we can evaluate the components from the left-hand side and equate them. For example, 

this H rho component will be given as 1 by rho arrow del E z del phi minus rho del E phi del 

Z, so this will be equal to minus j omega mu H rho. 
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In the same manner, from 𝛻 × �⃗⃗� = 𝑗𝜔𝜖�⃗� , we can get: 
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So, if you equate the rho components, we get this equation. Similarly, if we equate the phi 

components we get the expression relating H phi E z and E rho. Now, from the other curl 

equation, curl of H is equal to j omega epsilon E we get two more equations 1 by rho del H z 

del phi minus rho del H phi del z is equal to j omega epsilon E rho. And similarly minus del H 

z del rho minus del H rho del Z is equal to j omega epsilon E phi. 

So we use these equations, this set of four equations to express here E rho E phi H rho and H 

phi in terms of E z and H z. 
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Since the wave is assumed to propagate along 𝑧, the 𝑧  dependence is 𝑒𝑗𝛽𝑧 

The equation 
1
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) = −𝑗𝜔𝜇𝐻𝜌 can be written as  
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So, as before we assume the z dependence for the propagating wave to be given by e to the 

power minus j beta z and this equation 1 by rho del E z del phi minus rho del E phi del z is 

equal to minus j omega mu H rho. In this equation this del del z now we can replace del del z 

we can evaluate, and that will result in multiplication by minus j beta. So, the equation is 

rewritten in this form. 

Similarly, now we find that this equation contains E z H rho and E phi. If we can eliminate E 

phi in terms of a H z and H rho then we will get an equation where H rho will be explicitly 

expressed in terms of E z and H z. So, we start with this equation minus del H z del rho minus 

del H rho del z is equal to j omega epsilon e phi. Now, here also, this del del z will result in to 

minus j beta, and therefore this equation can be written in this form. 



Now, what we can do, we can substitute E phi in this equation and evaluate for H rho, which 

is shown next. 
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So, we write h rho is equal to 1 by j omega mu rho into del E z del phi plus j beta rho e phi and 

substituting E phi we have seen the expression for E phi then we can re-write the expression 

for H rho in this manner where you can see this term has been substituted here and we will find 

that omega square mu epsilon can be written as k square and once we simplify H rho in this 



form then we can write, we can take the last time involving H rho to the left-hand side and then 

k square minus beta square can be replaced by k c square and then we can write H rho as j by 

k c square omega epsilon by rho del E z del phi minus beta del H z del rho. 

So, this gives us the expression for the rho component of the magnetic field H rho. Now, similar 

exercise can be carried out for finding the other three field components, namely H phi, E rho, 

and E phi. 
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We have seen that 

 

 

So, once we do that we get a set of four equations, and we can see that we have expressed H 

rho, H phi, E rho, and E phi in terms of E z and H z. Now, that means once we can solve E z 

and H z we can get the solution of field components for the transverse fields, and this we can 

further simplify. For example, if we consider TM propagation, then H z will be 0, and if you 

consider TE mode of propagation then E z will be 0. 

So, our next target will be to solve this set of equations for TE and TM modes for which we 

will have to find out the longitudinal components, either E z or H z, by applying appropriate 

boundary conditions.  
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Let us now consider transverse electric or TE modes in circular waveguides. We have seen that 

the transverse field component E rho, E phi, H rho, and H phi these components can be related 

to the longitudinal components E z and H z as shown.  
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For TE case, 𝐸𝑧 = 0 and the wave equation involving 𝐻𝑧 component can be written as: 

𝛻2𝐻𝑧 + 𝑘2𝐻𝑧 = 0 

Now, 

𝐻𝑧(𝜌, ∅, 𝑧) = ℎ𝑧(𝜌, ∅)𝑒−𝑗𝛽𝑧  

𝛻2𝐻𝑧 + 𝑘2𝐻𝑧 = 0, in the cylindrical coordinates can be written as 

1

𝜌

𝜕
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Substituting the expression for 𝐻𝑧, we get 
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So, when we consider TE modes, we have E z component equal to 0, and we will have only 

the H z components, and the wave equation involving H z component can be written as the 

square H z plus k square H z equal to 0. Now, this H z in terms of rho, phi, and z can be written 

as small h z rho, phi that means this is a function of transverse coordinates rho and phi, and z 

variation is given by e to the power minus j beta z. 

So, if we consider the wave equation del square H z plus k square H z is equal to 0 and expand 

it in cylindrical coordinates then we can write 1 by rho del del rho, rho del phi, del H z, del rho 

plus 1 by rho square del square H z, del phi square plus del square H z, del z square plus k 

square H z equal to 0. Now, if we substitute the expression for a H z in this equation and we 

find that because the z dependence is given by e to the power minus j beta z, the derivative 

with respect to z will result in a term minus j beta. 

And therefore we can write del square h z del rho square 1 by rho del h z del rho plus 1 by rho 

square del square h z del phi square minus beta square h z plus k square h z equal to 0 and this 

equation can be further simplified by substituting k square minus beta square to be equal to k 

c square where the k c as we have seen represents the cut-off wavenumber. 
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We apply the method of separation of variables and write 

ℎ𝑧(𝜌, ∅) = 𝑅(𝜌)𝛷(𝜙) 

Substituting this in the previous equation and dividing both sides by 𝑅𝛷 we get 
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The above equation can be written as 
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+
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𝛷
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The LHS of the above equation depends on 𝜌 and RHS on ∅. Therefore, each side would be a 

constant. 

Let, 

−
1

𝛷

𝑑2𝛷

𝑑∅2
= 𝑘∅

2 

So that  

𝑑2𝛷

𝑑∅2
+ 𝑘∅

2𝛷 = 0 

 

 

Now, to solve this equation we apply the method of separation of variables and we write h z 

rho phi to be a product of two function R of rho and phi of phi, here note that R is only a 

function of rho and phi is only a function of small phi and once we substitute this in the previous 

equation and divide both sides by R and phi we get, so we substitute this R phi h z is equal to 



R phi and then divide throughout by R phi then we get 1 by R d square r, d rho square plus 1 

by rho R dR d rho plus 1 by rho square phi d square phi d phi square plus k c square equal to 

0. 

Now, what we can do? We can rearrange the terms, we can take the terms involving phi on the 

right-hand side, then the left-hand side becomes only a function of rho, and the right-hand side 

becomes only a function of phi and therefore each side has to be a constant and we write minus 

1 by phi d square phi d phi square is equal to k phi square. And therefore we get the equation 

d square phi by d phi square plus k phi square phi equal to 0. 
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 Also we get, 

𝜌2

𝑅

𝑑2𝑅

𝑑𝜌2
+

𝜌

𝑅

𝑑𝑅

𝑑𝜌
+ 𝑘𝑐

2𝜌 = 𝑘∅
2 

∴
𝜌2

𝑅

𝑑2𝑅

𝑑𝜌2
+

𝜌

𝑅

𝑑𝑅

𝑑𝜌
+ (𝑘𝑐

2𝜌 − 𝑘∅
2) = 0 

The solution of the equation,   
𝑑2𝛷

𝑑∅2 + 𝑘∅
2𝛷 = 0, is given by 

𝛷(𝜙) = 𝐴 sin 𝑘∅∅ + 𝐵 cos 𝑘∅∅ 

Since, ℎ𝑧(𝜌, ∅) = ℎ𝑧(𝜌, ∅ ± 2𝑚𝜋),𝑘∅ is an integer. Thus, 

𝛷(𝜙) = 𝐴 sin 𝑛∅ + 𝐵 cos 𝑛∅ 

where, 𝑛 is an integer. 

Therefore, the equation 

𝜌2

𝑅

𝑑2𝑅

𝑑𝜌2
+

𝜌

𝑅

𝑑𝑅

𝑑𝜌
+ (𝑘𝑐

2𝜌 − 𝑘∅
2) = 0 

 can be written as 

𝜌2
𝑑2𝑅

𝑑𝜌2
+ 𝜌

𝑑𝑅

𝑑𝜌
+ (𝑘𝑐

2𝜌 − 𝑛2)𝑅 = 0 

 



 

Introducing k phi square, we can write the equation involving rho to be rho square by R, d 

square R d rho square plus rho by R dR d rho plus k c square rho square is equal to k phi square, 

and therefore we can rearrange it and write it in this form. Now, let us consider the equation 

involving phi d square phi, d phi square plus k phi square phi equal to 0. The solution to this 

equation, the general solution is given by phi phi is equal to A sin k phi phi plus B cos k phi 

phi. 

Now, the h z rho, phi it can be seen that because of the circular symmetry is same as h z rho 

phi plus or minus 2m pi and therefore k phi will be an integer and we can write phi phi is equal 

to A sin n phi plus b cos n phi where n is an integer. So, essentially, we replace in this equation 

k phi by an integral value, and this is to take into account that h z it is periodic with respect to 

phi. 

And therefore the equation here rho square by R d square R by d rho square plus rho by R dR 

d rho plus k c square rho minus k phi square equal to 0 can be written as replacing n in place 

of k phi and multiplying throughout by R we can put it in this form. 



(Refer Slide Time: 19:20)  

For the differential equation, 

1

𝜌

𝜕

𝜕𝜌
(𝜌

𝜕𝑓

𝜕𝜌
) + (𝑘2 −

𝑛2

𝜌2
)𝑓 = 0 

The solutions are  

𝑓(𝜌) = 𝐶𝐽𝑛(𝑘𝜌) + 𝐷𝑌𝑛(𝑘𝜌) 

 

 

The differential equation 1 by rho; del del rho; rho del f del rho plus k square minus n square 

by rho square f equal to 0, this equation is known as Bessel equation, and the solution to this 

equation are the Bessel function. So, the solution f of rho is the general solution is given by CJ 

n; k rho plus DY n k rho. Here J n these are the Bessel function of the first kind and Y n Bessel 

function of the second kind and CJ n plus DY n this gives the general solution. 

If we plot the Bessel functions for say J n x for n is equal to 0, 1, 2 so we get this type of plot, 

and we note that for example J 0 it is oscillatory in nature, and it is amplitude decreases, and it 

also crosses the x-axis several times. Now, whenever J n x becomes 0 those values of x this 

will call the roots of the Bessel function. For example, this will be the first root of J naught, 

this will be the first root of J 1, and we will designate them by p, n, m, which means the mth 

root of the nth order Bessel function. 

The Y n when it is plotted, Y n x we find that the value of Y n becomes tend to become minus 

infinity as x approaches towards 0. Now, please note that this solution CJ n k rho plus DY n k 

rho this is a general solution, we will consider only that solution, which is consistent with our 



waveguide. Now, in a circular waveguide system the field at the center has to remain finite that 

means when rho equal to 0, the field has to be finite, and therefore this Y n solution is not a 

feasible solution for our waveguide, and we will retain only the J n solutions. 
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Therefore, the solution of 

𝜌2
𝑑2𝑅

𝑑𝜌2
+ 𝜌

𝑑𝑅

𝑑𝜌
+ (𝑘𝑐

2𝜌2 − 𝑛2)𝑅 = 0 

can be written as 

𝑅(𝜌) = 𝐶𝐽𝑛(𝑘𝑐𝜌) + 𝐷𝑌𝑛(𝑘𝑐𝜌) 

∵ 𝑌𝑛(𝑘𝑐𝜌) → ∞ 𝑎𝑡 𝜌 = 0 

and hence cannot be a solution. 

∴ ℎ𝑧(𝜌, ∅) = (𝐴 sin 𝑘∅∅ + 𝐵 cos 𝑘∅∅)𝐽𝑛(𝑘𝑐𝜌) 

The constant 𝐶 is absorbed in 𝐴 & 𝐵. 

 

 

So, while writing the solution of this equation we can write R rho is equal to C n k c rho plus 

DY n k c rho as a general solution but as we have discussed Y n k c rho will tend to infinity as 

rho is equal to 0 and the field at the centre of the waveguide that means rho is equal to 0 has to 



become finite we cannot take it to be a solution and therefore we write h z rho phi as A sin k 

phi phi plus B cos k phi phi J n k c rho, so this is the solution of h z in terms of that transverse 

coordinate rho and phi. 

Now, note that this constant c here is absorbed in the constants A and B.  
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The cut-off wave number 𝑘𝑐 is determined as follows: 

We have   

𝐸∅ = 0 𝑓𝑜𝑟 𝜌 = 𝑎 

and  

𝐸∅ =
−𝑗

𝑘𝑐
2
𝜔𝜇

𝜕𝐻𝑧

𝜕𝜌
 

Therefore, to satisfy the boundary condition for 𝐸∅, we have 

𝐽𝑛
′ (𝑘𝑐𝑎) = 0 

𝐽𝑛
′ (𝑥) =

𝐽𝑛−1(𝑥) − 𝐽𝑛+1(𝑥)

2
 

𝐽−𝑛(𝑥) = (−1)𝑛𝐽𝑛(𝑥) 

  

 

The cut-off wave number k c we can determine as follows. We know that in a circular 

waveguide the E phi component it will be tangential to the waveguide wall, and E phi has to 

become 0 at rho equal to a, and therefore, we evaluate E phi equal to minus j by k c square 



omega mu del H z del rho. We have seen how we can express these field components in terms 

of the H z and E z components in our earlier discussion. 

So, continuing from there we can write E phi is in this form, and therefore, to satisfy this 

boundary condition for E phi we must have J dash n which this dash indicates the derivative 

because we have del del rho k c rho into an equal to 0. This follows from the fact that H z has 

J n k c rho, and we take the derivative of the same and then substitute rho equal to a then J n 

dash k c a must be equal to 0 for satisfying the boundary condition E phi equal to 0. 

Now, we can evaluate the derivative of Bessel function in terms of the Bessel functions 

themselves and J dash n x is given by J n minus 1 x minus J n plus 1 x by 2, and also we note 

that for example when n will become 0 it will be J minus 1, so J minus n is minus 1 to the 

power n J n x. So, using these two relationships, what we can do? We can find out J n dash this 

function. 

For example, we have plotted here the derivative of the Bessel function for n is equal to 0 and 

n is equal to 1. So, we find that J 1 prime or J 1 dash it becomes 0 at x is equal to 1.84 around 

this value, and so this represents a root of the derivative of the Bessel function. Now, we call 

P dash nm as the root of the mth root of the derivative of nth order Bessel function, and this is 

tabulated here. 

So, let us verify, for example when n is equal to 1 and m is equal to 1, which means the first 

root of the J 1 dash or derivative of J 1 it occurs at 1.841, the next root is at 5.331. So, you can 

see this gives the order of the vessel function, and this gives the roots. Please note that for J 

naught dash the first 0 crossing occurs at 3.832, so this is the first root next root is at 7.016, so 

it should be here 7.016. 

So this table it gives the roots of the derivative of nth order Bessel function, and it gives the 

mth root and we denote it by P dash nm. 
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For 𝐽𝑛
′ (𝑥) = 0 , the roots are denoted by 𝑝𝑛𝑚

′  so that 𝐽𝑛
′ (𝑝𝑛𝑚

′ ) = 0 where, 𝑝𝑛𝑚
′  is the 𝑚𝑡ℎroot 

of the derivative of 𝐽𝑛. 

∴ 𝑘𝑐𝑛𝑚
=

𝑝𝑛𝑚
′

𝑎
 

𝛽𝑛𝑚 = √𝑘2 − 𝑘𝑐
2 = √𝑘2 − (

𝑝𝑛𝑚
′

𝑎
)
2

 

𝑓𝑐𝑛𝑚
=

𝑘𝑐

2𝜋√𝜇𝜖
=

𝑝𝑛𝑚
′

2𝜋𝑎√𝜇𝜖
 

  

 

So, for J n dash x is equal to 0, the roots are denoted by P nm dash and as we have mentioned 

that it is the mth root of the derivative of J n. And now we find that k c nm can be written as P 

nm dash by a because we have a k c nm is equal to P nm dash. Now, beta for the nmth mode 

can be found out as k square minus P nm dash by a whole square, and in the same manner, the 

cut-off frequency f c nm can be found as P nm dash divided by 2 pi a root mu epsilon. 
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 Therefore,  for TE case we can write 

∴ 𝐻𝑧(𝜌, ∅, 𝑧) = (𝐴 sin 𝑘∅∅ + 𝐵 cos 𝑘∅∅)𝐽𝑛(𝑘𝑐𝜌)𝑒−𝑗𝛽𝑧 

𝐸𝜌 =
−𝑗

𝑘𝑐
2

𝜔𝜇

𝜌

𝜕𝐻𝑧

𝜕∅
 

𝐸∅ =
𝑗

𝑘𝑐
2
𝜔𝜇

𝜕𝐻𝑧

𝜕𝜌
 



𝐻𝜌 =
−𝑗

𝑘𝑐
2
𝛽

𝜕𝐻𝑧

𝜕𝜌
 

𝐻∅ =
−𝑗

𝑘𝑐
2

𝛽

𝜌

𝜕𝐻𝑧

𝜕∅
 

∵ 𝑘𝑐𝑛𝑚
=

𝑝𝑛𝑚
′

𝑎
, the mode with lowest cut-off frequency is TE11 

 

 

Now, if we summarize for the TE case we can write the complete expression for H z in this 

form and the transverse field components E rho, E phi, H rho, H phi they can be evaluated from 

the expressions given and we have already found out H z, we have found out k c so all the field 

components can be known. Now, we note that the cut-off frequency of the lowest mode is 

determined by this value P nm dash and the mode with the lowest cut-off frequency is TE 11 

because P 11 dash has the lowest value in that table we have shown and it is equal to 1.841. 
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Further, the amplitude constants A &B are arbitrary and determine the amplitudes of the terms 

sin(𝑛∅) and cos(𝑛∅). 

Either cos(𝑛∅) or sin(𝑛∅) may be chosen as the solution by setting 𝐵 = 0 or 𝐴 = 0. 

The wave impedance for the 𝑇𝐸 mode is given by: 

𝑍𝑇𝐸 =
𝐸𝜌

𝐻∅
=

−𝐸∅

𝐻𝜌
=

𝜂𝑘

𝛽
 

 



 

Further these amplitude constants A and B they are arbitrary and determine the amplitude in 

terms of sin n phi and cos n phi. Now, A sin n phi plus b cos n phi this is a general solution 

either cos n phi or sin n phi may also be chosen as a solution by setting either B equal to 0 or 

A equal to 0. The wave impedance for the TE mode is given by Z TE is equal to E rho by H 

phi which is equal to minus of E phi by H rho and it can be found out to be eta k by beta. 
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For TM case,  𝐻𝑧 = 0  and 𝐸𝑧(𝜌, ∅, 𝑧) = 𝑒𝑧(𝜌, ∅)𝑒−𝑗𝛽𝑧 

Therefore, 

(
𝜕2

𝜕𝜌2
+

1

𝜌

𝜕

𝜕𝜌
+

1

𝜌2

𝜕2

𝜕∅2
+ 𝑘𝑐

2) 𝑒𝑧(𝜌, ∅) = 0 

Proceeding as in the TE case,  we obtain a solution for 𝑒𝑧 as 

𝑒𝑧(𝜌, ∅) = (𝐴 sin 𝑘∅∅ + 𝐵 cos 𝑘∅∅)𝐽𝑛(𝑘𝑐𝜌) 

We have 𝐸𝑧 = 0 at 𝜌 = 𝑎 and  therefore 𝐽𝑛(𝑘𝑐𝑎)=0 

 



 

Let us now consider how we find out the transverse magnetic or TM mode in circular 

waveguide. The treatment is identical to that used for analysing the TE mode, for this TM case 

we have H z equal to 0 and E z can be expressed as E z rho, phi which gives the variation of E 

z with respect to transverse coordinate rho and phi and the z variation is given by e to the power 

minus j beta z. 

And therefore as in the previous case now we can write the wave equation in this form and if 

you proceed in the same manner as we did in the TE case we can obtain a solution for E z and 

E z rho phi it can be written as A sin k phi phi plus B cos k phi phi J and k 0. Please note that 

here again as in the case of as in TE case this becomes an integer n k phi and we have now is 

that itself is a tangential component and we can apply the boundary condition on E z directly 

that is E z becomes 0 at rho equal to a and therefore this term J n k ca is equal to 0. 
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The roots of 𝐽𝑛(𝑥) = 0 are denoted by 𝑝𝑛𝑚 

𝑘𝑐𝑛𝑚
=

𝑝𝑛𝑚

𝑎
  and 𝑓𝑐𝑛𝑚

=
𝑘𝑐

2𝜋√𝜇𝜖
=

𝑝𝑛𝑚

2𝜋𝑎√𝜇𝜖
 

From the table lowest TM mode is 𝑇𝑀01 

 𝑍𝑇𝑀 =
𝐸𝜌

𝐻∅
=

−𝐸∅

𝐻𝜌
=

𝜂𝛽

𝑘
 

 



 

 

We have already plotted the Bessel functions and the roots of J n x equal to 0. They are denoted 

by P nm and if we consider J n x then we have seen that J 0 crosses this x-axis for a value of 

2.4054 then followed by 5.520 like that. So we have a table for the values of P nm, which are 

essentially represents the mth root of J n x and once we have these values of P nm we can write 

cut-off wave number k c nm is equal to P nm by a. 

And similarly cut-off frequency f c nm is equal to k c divided by 2 pi root mu epsilon, which 

we can write P nm divided by 2 pi a root mu epsilon. Please note that when it comes to TM 

mode the lowest mode is TM 01, we saw in the case of TE the lowest mode was be TE11 but if 

we compare the cut-off frequency of TM 01 and be TE11, be TE11is lower the value of P dash 

11 was 1.841. 



So, for a given radius of the circular waveguide, the mode with the overall if you consider both 

TM and TE cases the mode with the lowest cut-off frequency will be TE11, and that is why this 

is called the dominant mode in a circular waveguide. We should also note that when we 

discussed a rectangular waveguide, the cut-off frequency could be changed by changing the 

parameters A and B the width and height of the guide. 

So, we can have different sequences of occurrence of the mode cut-off frequencies of the mode 

but when it comes to a circular waveguide we have only the radius, and once the radius is set 

the sequence in which the modes will come becomes fixed. For example, the mode with the 

lowest cut-off frequency is TE11, and then the next mode that will come is TM01, and then if we 

consider the table, we find that the next mode that will come is TE21 because this is a value 

3.054. 

So, in that order the modes will keep on also coming there are certain values which are common 

in these two tables, and this will represent the degenerate modes as we have already discussed 

if we have two modes with same cut-off frequency they become degenerate. For example, if 

you consider TM 12 mode here the value for P nm is 7.016 and if we go back to our TE mode 

case, then we find that TE 02 has the same value 7.016, so TE 02 will become degenerate with 

TM 12 case. 

The wave impedance ZTM is given by E rho by H phi, which is equal to minus E phi by H rho 

and is equal to eta, beta by k here eta is the intrinsic impedance of the dielectric media within 

the guide and k is the wavenumber in that dielectric media.  
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Let an air-filled circular waveguide has a radius of 2 cm. 

We find that the cutoff frequency for the dominant mode ( 𝑇𝐸11) for this waveguide is 

𝑓𝑐11

𝑇𝐸 =
𝑝11

′

2𝜋𝑎√𝜇0𝜖0
=

1.841×3×108

4×𝜋×10−2 = 4.4 GHz 

Cutoff frequency for the 𝑇𝑀01 mode is  

𝑓𝑐𝑜1

𝑇𝑀 =
𝑝01

2𝜋𝑎√𝜇0𝜖0
=

2.405×3×108

4×𝜋×10−2 = 5.75 GHz 

 



 

Let us now consider a simple example to see how the order of the cut-off frequencies that we 

get in practical wave guides. Let us consider an air-filled circular waveguide and let us assume 

that the radius is 2 centimetre, and then we find that the cut-off frequency for the dominant 

mode TE11 is given by f c 11 TE is p 11 dash divided by 2 pi a root mu naught epsilon naught 

and this can be written as 3 into 10 to the power 8 and then this p 11 dash is 1.841 and 

substituting these values we get the cut-off frequency for TE11 mode as 4.4 gigahertz. 

Similarly, if we consider the cut-off frequency for TM01 mode then everything remains same 

only this p 11 dash is now replaced by p 01, and therefore cut off frequency for the TM01 mode 

becomes 5.75 gigahertz. So, please note that this is the range in which we have a two-centimeter 

circular waveguide will give single-mode operation because beyond 5.75 you can have the 

second mode can be propagated, but from 4.4 to 5.75 for this particular waveguide with radius 

two centimeter, only TE11 mode can be propagated. 

So, in these lectures, we have considered the propagation of different modes in the circular 

waveguide. We have not considered any attenuation of signals because we have assumed the 

waveguide walls to be perfectly conducting. Next, we will consider the attenuation of signal 

inside the waveguide walls because of the finite conductivity of the waveguide walls.  


