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This forms the basis of scattering matrix formulation.  

For a N port network, at the 𝑛𝑡ℎport let us define 

       𝑎𝑛 = 
𝑉𝑛

+

√𝑧0𝑛
     &   𝑏𝑛 = 

𝑉𝑛
−

√𝑧0𝑛
 

𝑧0𝑛 is the characteristic impedance of the port n. 

Let us consider a two port network for which we can write: 

        𝑏1 = 𝑆11𝑎1 +𝑆12𝑎2 

        𝑏2 = 𝑆21𝑎1 +𝑆22𝑎2 

         

         [𝑏] = [𝑆][𝑎]  

 

 

We now consider the scattering matrix representation of microwave networks. Representation 

of microwave networks. By impedance or admittance matrix is not very convenient as at 

microwave frequency, the voltage, current, or impedance cannot be measured in a direct 

manner. The quantities that may be measured easily are the reflection coefficient and 

transmission coefficient, and this forms the basis of scattering matrix formulation. 



The scattering parameters can be measured directly from instruments called network analyzers 

so, let us consider an N port network and at the Nth port let us define, the parameter an which 

is voltage Vn plus the incident voltage at the Nth port, normalized with respect to square root 

of Z0
n the Z0

n being the impedance of the Nth port, similarly we define bn is Vn minus divided 

by root Z0
n. So to illustrate, let us consider a 2 port network. 

So, these parameters a1 and b1 there the incident and reflected parameters, they represent the 

incident and reflected waves, in port 1 similarly a2 b2 represents the incident and reflected 

waves at port 2. And we can write the reflected waves b1 as S11 a1 plus S12 a2; similarly b2 S21 

a1 plus S22 a2, and this can be written in the form of matrix bs a now this s matrix it is the 

scattering matrix for this 2 port network. 
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We find that 

              𝑆11 = 
𝑏1

𝑎1
|a2 = 0 

𝑆11 = 
𝑉1

−

𝑉1
+| 𝑉2

+ = 0   

Similarly, 𝑆22 is the reflection coefficient at port 2.   

𝑆12 &  𝑆21 are transmission coefficients. 

The voltage at the 𝑛𝑡ℎ
 port is given by  

                      𝑉𝑛 = 𝑉𝑛
+ + 𝑉𝑛

−
 

                           = √𝑧0𝑛 (𝑎𝑛 + 𝑏𝑛) 

 

 

 

 



 

Now we find that S11 is actually b1 by a1 when a2 equal to 0. And therefore, it represents V1 

minus by V1 plus at port 1 when V2 plus is equal to 0.  And this is essentially the reflection 

coefficient at port 1 when no voltage is incident at port 2. Similarly, S22 is the reflection 

coefficient at port 2, and S12 and S21 will be the transmission coefficients from port 2 to 1 and 

from 1 to 2. Now the voltage at the Nth port it is given by Vn is equal to Vn plus Vn minus, and 

in terms of the parameters an and bn we can write Vn to be equal to root Z0
n a plus bn. 
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The current at the 𝑛𝑡ℎ port 

                      𝐼𝑛 =  
1

𝑧0𝑛
 (𝑉𝑛

+ − 𝑉𝑛
−) 

                           =
1

√𝑧0𝑛
(𝑎𝑛 − 𝑏𝑛) 

Power flow at the 𝑛𝑡ℎ port is given by 

                              𝑃𝑛 = 
1

2
Re(𝑉𝑛𝐼𝑛

∗) 

                                    = 
1

2
Re{(𝑎𝑛 + 𝑏𝑛)(𝑎𝑛 − 𝑏𝑛)∗} 

                                    = 
1

2
Re{𝑎𝑛 𝑎𝑛

∗ − 𝑏𝑛 𝑏𝑛
∗ + (𝑎𝑛

∗𝑏𝑛 − 𝑏𝑛
∗𝑎𝑛)} 

 



 

 

Similarly, the current at the Nth port is defined as 1 by Z0
n Vn plus minus Vn minus, and 

therefore, we can write In to be equal to 1 by root Z0
n, n minus Vn. And if we calculate the 

power flow at the Nth port, then it is half real part of Vn In conjugate and when we substitute 

Vn and In we get, Pn is half real part of an plus bn and an minus bn conjugate. When it is 

expanded, we can write in this form a conjugate minus bn conjugate. Plus a conjugate bn 

minus bn conjugate an. 
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Now , the term 𝑎𝑛
∗𝑏𝑛 − 𝑏𝑛

∗𝑎𝑛 is purely imaginary  

∴ 𝑃𝑛 =  
1

2
(𝑎𝑛 𝑎𝑛

∗ − 𝑏𝑛 𝑏𝑛
∗) 

  
1

2
 𝑎𝑛 𝑎𝑛

∗  = 
|𝑉𝑛

+|
2

2𝑧0𝑛
   is the power carried to the 𝑛𝑡ℎ port by the incident wave 

 
1

2
 𝑏𝑛 𝑏𝑛

∗  = 
|𝑉𝑛

−|2

2𝑧0𝑛
 is the power reflected back from the 𝑛𝑡ℎ port  

  

 



 

Now this term can be shown to be purely imaginary and therefore, we can write Pn is equal to 

half an an conjugate minus bn bn conjugate. Now this term half an an conjugate, which can be 

written as mod Vn plus square divided by Z0
n. it is the power carried to the Nth port by the 

incident wave. Similarly, half bn conjugate is bn minus magnitude square divided by 2 Z0
n it 

is the power reflected back from the Nth port. 
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We have seen that for a reciprocal network Z-matrix is symmetric. 

     

∴ [𝑉] = [𝑍][𝐼] 

Let us assume that all ports have the same characteristics impedance 𝑍0  i.e. 𝑍0𝑛 = 𝑍0 

Then we can write 

[𝑉+] + [𝑉−] = [𝑍]
1

𝑍0
 ([𝑉+] − [𝑉−]) 

                                                        = [𝑍′] ([𝑉+] − [𝑉−]) 

where [𝑍′] = 
[𝑍]

𝑍0
 

 



 

Now let us discuss the symmetry property of s matrix. Now we have already seen that for a 

reciprocal network z matrix is symmetric. Now let us start over discussion, with the assumption 

that all the port impedances are same that means Z0
n is equal to z Naught. So we can write V 

matrix as V plus and V matrix and I matrix and replace by 1 by z Naught V plus minus V 

minus.  And that can be written as Z dash V plus minus V minus.  
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Rearranging the terms we can write 

([𝑍′] + [𝑈])[𝑉−] = ([𝑍′] − [𝑈])[𝑉+] 

Here, [𝑈] is the unity matrix 

when 𝑍0𝑛 = 𝑍0, [𝑏] = [𝑆][𝑎] can be written as  

                              [𝑉−] = [𝑆][𝑉+] 

Also from ([𝑍′] + [𝑈])[𝑉−] = ([𝑍′] + [𝑈])[𝑉+] 

We can write  

 [𝑉−] = ([𝑍′] + [𝑈])−1([𝑍′] − [𝑈])[𝑉+] 

Comparing with  [𝑉−] = [𝑆][𝑉+] 

We can write [𝑆] = ([𝑍′] + [𝑈])−1([𝑍′] − [𝑈])  

 



 

 

So if we rearrange the terms that mean we take V minus, a terms in one side and V plus terms 

on the other side then, we can write, this u is the unity matrix and similarly when we have all 

the port impedances are same equal to z Naught the scattering matrix be is equal to S a this 

term can be written as V minus S, V plus and from this term above we can find V minus to be 

equal to Z dash plus U inverse into z dash minus U into V plus. If we compare these 2, then 

we get s equal to z dash plus u inverse into z dash minus u. so these expressions establish a 

relationship between the s matrix and the z matrix rather z dash matrix where we have 

normalized z matrix by z Naught. We can also have an alternative form of representation for 

the scattering matrix. 
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An alternate form for the scattering matrix can be derived as follows: 

At the 𝑛𝑡ℎport  

𝑉𝑛 = 𝑉𝑛
+ + 𝑉𝑛

− 

                                                 𝐼𝑛 =
1

𝑍0
(𝑉𝑛

+ − 𝑉𝑛
−) 

∴ 𝑉𝑛
+ =

1

2
(𝑉𝑛 + 𝑍0𝐼𝑛) 

𝑉𝑛
− =

1

2
(𝑉𝑛 − 𝑍0𝐼𝑛) 

[𝑉+] = 
1

2
([𝑉] + 𝑍0[𝐼]) = 

1

2
([𝑍] + 𝑍0[𝑈])[𝐼]    and 

[𝑉−] = 
1

2
([𝑉] − 𝑍0[𝐼]) = 

1

2
([𝑍] − 𝑍0[𝑈])[𝐼] 

 



 

We can derive it like this at the Nth port, we have Vn equal to Vn plus plus Vn minus and In is 

1 by z Naught, Vn plus minus Vn minus. So, we can write, we can find out the expression for 

Vn plus and Vn minus from these 2, and then we can write, Vn plus as half the voltage matrix 

for the incident wave, V plus is equal to half Z plus Z Naught U I and similarly, for the voltage 

matrix for the reflected waves we can write in this form. 
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[𝐼] = 2([𝑍] + 𝑍0[𝑈])−1[𝑉+] 

∴ [𝑉−] = ([𝑍] − 𝑍0[𝑈])([𝑍] + 𝑍0[𝑈])−1[𝑉+] 

[𝑉−] = ([𝑍′] − [𝑈])([𝑍′] + [𝑈])−1[𝑉+] 

∴  [𝑆] = ([𝑍′] − [𝑈])([𝑍′] + [𝑈])−1 

From our earlier derivation we have 

[𝑆] = ([𝑍′] + [𝑈])−1([𝑍′] − [𝑈]) 

Since [𝑍′] & [𝑈] are symmetrical matrices 

(([𝑍′] + [𝑈])−1)𝑡  = ([𝑍′] + [𝑈])−1    & ([𝑍′] − [𝑈])𝑡 = ([𝑍′] − [𝑈]) 

∴ [𝑆] = [𝑆] 
𝑡

 

 



 

Now from these 2 relation we can find S scattering matrix, so once we make all these 

substitutions, we finally get the expression for s, which is s is equal to z dash minus U, 

multiplied by Z dash plus U inverse. So, this is another expression for scattering matrix S in 

terms of this normalized impedance matrix. And from our earlier derivation we got, this 

expression, now since Z dash and U that, these 2 matrix are symmetrical, so if we take 

transverse of these, then we can find S is equal to S transpose.  

Because once, we take the transverse of this matrix, this inverse transpose will be same as the 

inverse for a symmetric matrix and Z dash minus U transpose will be equal to Z dash minus U. 

From this we can find that S is equal to S transpose, and this shows that the scattering matrix 

for a microwave network is symmetric.  
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When the port impedances 𝑍0𝑛 are all different we can write 

  

𝑉�̅� = (𝑉𝑛
+ + 𝑉𝑛

−) √𝑧0𝑛⁄    = 𝑉𝑛 √𝑧0𝑛⁄    =  𝑎𝑛 + 𝑏𝑛 

𝐼�̅� = (𝑉+ − 𝑉−) √𝑧0𝑛⁄    =   𝐼𝑛√𝑧0𝑛  = 𝑎𝑛 − 𝑏𝑛 

We define,  

[√𝑧0𝑛] = [

√𝑧01 0   ⋯ 0

⋮ √𝑧02 ⋱ ⋮

0 ⋯ √𝑧0𝑁

]   and 



 [
1

√𝑧0𝑛
] = 

[
 
 
 
 

1

√𝑧01
0 ⋯ 0

⋮
1

√𝑧02
⋱ ⋮

0 ⋯
1

√𝑧0𝑁]
 
 
 
 

 

 

 

We can also show that when all the port impedances z0n are different then also this property 

holds. So in order to show that we write Vn bar to be equal to Vn plus Vn minus divided by 

root z0n, and this is actually an plus bn and in the same manner In bar becomes an minus bn. 

And we introduce 2 square matrixes 1 is a matrix of root z0n which is all the diagonal elements 

as root z0n and of the diagonal elements are zero. And another matrix where the diagonal 

elements are 1 by root z0n. 
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Using these two matrices we can write 

 [𝑉] = [√𝑧0𝑛][�̅�] 

 [𝐼] = [
1

√𝑧0𝑛
] [𝐼]̅ 

 ∴  [𝑉] = [𝑍][𝐼] can be written as 

[√𝑧0𝑛][�̅�] = [𝑍] [
1

√𝑧0𝑛
] [𝐼]̅ 

∴ [�̅�] = [√𝑧0𝑛]
−1

[𝑍] [
1

√𝑧0𝑛
] [𝐼]̅ 

           =  [�̅�][𝐼]̅ 



[�̅�] = [𝑧0𝑛]−1[𝑍] [
1

√𝑧0𝑛
] is symmetric 

 

 

 

Now if we introduce these 2 matrices we can write the voltage matrix V can be related to 

normalized voltage V bar and similarly, current matrix I can be related to normalized current 

matrix I bar. And this equation V matrix is equal to z matrix into I matrix can be written as 

shown here, in terms of the normalized voltages and currents. And then we find that this 

normalized voltage matrix is related to the current matrix in this manner, where we have a 

matrix root z0n inverse then, the matrix z another matrix 1 by root z0n. 

So, we denote this as Z bar and therefore, we have now V bar is equal to Z bar, I bar. Please 

note that this matrix Z bar is symmetric, because the component matrix z0n, 1 by z0n, z they 

are all symmetric matrices and Z bar is the product of these symmetric matrices.  
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[𝑎] + [𝑏] = [�̅�] 

 [𝑎] − [𝑏] = [𝐼]̅ 

 [𝑎] + [𝑏] = [�̅�] = [�̅�][𝐼]̅ 

                   =  [�̅�]([𝑎] − [𝑏]) 

∴  [𝑏] + [�̅�][�̅�] = [�̅�][𝑎] − [𝑎] 

∴  ([𝑈] +  [�̅�])[�̅�] = ([�̅�] − [𝑈])[𝑎] 

∴  [�̅�] = ([𝑈] +  [�̅�])−1([�̅�] − [𝑈])[𝑎] 

∴  [𝑆] = ([�̅�] + [𝑈])−1([�̅�] − [𝑈]) 

 



 

So, we can relate the normalized voltage matrix to matrices a and b as shown. Similarly, the 

normalized current matrix can be related to matrices a and b as, a minus b equal to I bar. Now 

V bar can be replaced at Z bar I bar and then, we replaced I bar and then, rearranging the terms 

we can write, b to be U plus Z bar inverse into Z bar minus U a. now this essentially gives the 

s matrix the scattering matrix S in terms of the unity matrix U normalized Z matrix. 

Now since, U and Z bar they are symmetric S is also symmetric and therefore, for any linear 

and reciprocal network, that is where Z matrix is symmetric, the scattering matrix S is also 

symmetric. 
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We have seen that 𝑃𝑛 =  
1

2
(𝑎𝑛 𝑎𝑛

∗ − 𝑏𝑛 𝑏𝑛
∗) 

For a lossless junction total power leaving the all 𝑁 ports must be equal to sum of the incident 

powers. 

Therefore, ∑ 𝑏𝑛 𝑏𝑛
∗ =𝑁 ∑ 𝑎𝑛 𝑎𝑛

∗
𝑁  

Since, [𝑏] = [𝑆][𝑎] 

𝑏𝑛 = ∑ 𝑆𝑛𝑖𝑎𝑖

𝑁

𝑖=1

 

Therefore, we can write 



∑ |∑𝑆𝑛𝑖𝑎𝑖

𝑁

𝑖=1

|

2𝑁

𝑛=1

= ∑ 𝑎𝑛 𝑎𝑛
∗

𝑁

𝑛=1

 

 

 

Now let us consider the scattering matrix representation for a lossless junction. By a lossless 

junction, we mean that whatever power it enters the network, through different ports same 

power will leave the network and we have seen that the power in the Nth port Pn is given by 

half an an conjugate minus bn bn conjugate, this is the incident power and this is the reflected 

power. So, when the junction is lossless total power leaving all N ports must be equal to the 

sum of the incident powers, and we will have sigma Pn equal to 0, and from there, we can 

write, summation of bn bn conjugate, is equal to summation of an an conjugate. 

Now since, we have b is equal to Sa we can write, bn to be equal to sum of Sni ai. So, bn is the 

Nth element of the b vector and that can be obtained by multiplying the corresponding Nth 

elements of Nth row with the elements of vector I and summing them, over I to N. and then, if 

we substitute here, in this expression, bn and bn conjugate then essentially we will get modules 

of summation of Sni ai square and this side we will get, summation of an an conjugate. 
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Since 𝑎𝑛 parameters are independent, if we set all the 𝑎𝑛except 𝑎𝑖 to be zero. 

For this the equation ∑ |∑ 𝑆𝑛𝑖𝑎𝑖
𝑁
𝑖=1 |

2𝑁
𝑛=1 = ∑ 𝑎𝑛 𝑎𝑛

∗𝑁
𝑛=1  reduces to: 

∑|𝑆𝑛𝑖𝑎𝑖|
2

𝑁

𝑛=1

= 𝑎𝑖𝑎𝑖
∗ = |𝑎𝑖|

2 

Therefore,  

∑|𝑆𝑛𝑖|
2

𝑁

𝑛=1

= ∑ 𝑆𝑛𝑖𝑆𝑛𝑖
∗

𝑁

𝑛=1

= 1 

The dot product of any column of matrix [𝑆] with the conjugate of that same column gives 

unity. 

 

 

Now this parameters an these are the input parameters and therefore, they can be chosen 

independently and if we set all the an except ai to be 0 then, this equation what we have written, 

reduces to this. So it becomes this summation becomes, mod of ai square and this summation 

it becomes a single term Snai ai (magnitu) root square and therefore, what we see that, 

summation of Sni square which is actually summation of Sni Sn conjugate is equal to 1. 

Now this Sni essentially represents the element of the Ith column of the scattering matrix. And 

this is the conjugate of the elements of the Ith column and therefore, we can write that, the dot 

product of any column of scattering matrix S with the conjugate of that of the same column 

gives unity. And please note that here, this I may take any value from 1 to N. so, this 

relationship will be held for any column of the S matrix. 
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Let us now consider another property of scattering parameters of a lossless junction. 

Let us set all the 𝑎𝑛 except 𝑎𝑠 and 𝑎𝑟 to be zero. 

For this the equation ∑ |∑ 𝑆𝑛𝑖𝑎𝑖
𝑁
𝑖=1 |

2𝑁
𝑛=1 = ∑ 𝑎𝑛 𝑎𝑛

∗𝑁
𝑛=1  reduces to: 

∑|𝑆𝑛𝑠𝑎𝑠 + 𝑆𝑛𝑟𝑎𝑟|
2

𝑁

𝑛=1

= 𝑎𝑠𝑎𝑠
∗ + 𝑎𝑟𝑎𝑟

∗ = |𝑎𝑠|
2 + |𝑎𝑟|

2 

∑(𝑆𝑛𝑠𝑎𝑠 + 𝑆𝑛𝑟𝑎𝑟)

𝑁

𝑛=1

(𝑆𝑛𝑠𝑎𝑠 + 𝑆𝑛𝑟𝑎𝑟)
∗ = |𝑎𝑠|

2 + |𝑎𝑟|
2 

 

 

Now let us consider another property of the scattering parameters of a lossless junction. Now 

in this case what we will do, we consider as and ar to be non-zero, and all other an s is zero. 

Then, from this equation if we expand, we can write summation of 1 to N Sns as plus Snr ar 

magnitude square, and on the right-hand side it becomes, as conjugate plus ar conjugate, and 

this becomes as square plus ar square. So, if we expand these product terms then, we find that 

we will have terms like summation of small n is equal to 1 to capital N. mod of Sns square mod 

of as square. 

Now these summations of mod of Sns square as we have seen it will become 1. So, we will 

have mod of as square. Similarly, product of these 2 terms will give mod of ar square and that 

will get cancelled with these 2 terms and making this simplification from this expression, we 

will get a relation of these form, which is summation of 1 to N Snr ar Sns conjugate as conjugate 

is plus Sns as Snr conjugate ar conjugate, is equal to zero. 
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Since 𝑎𝑠 and 𝑎𝑟 are independent, if we chose 𝑎𝑠 = 𝑎𝑟 from  

∑(𝑆𝑛𝑟𝑎𝑟𝑆𝑛𝑠
∗ 𝑎𝑠

∗ + 𝑆𝑛𝑠𝑎𝑠𝑆𝑛𝑟
∗ 𝑎𝑟

∗)=0 

𝑁

𝑛=1

 

 we get 

∑(𝑆𝑛𝑠𝑆𝑛𝑟
∗ + 𝑆𝑛𝑟𝑆𝑛𝑠

∗ )=0 

𝑁

𝑛=1

 

If, instead, we chose 𝑎𝑠 = 𝑗𝑎𝑟 with 𝑎𝑟 real, from  

∑(𝑆𝑛𝑟𝑎𝑟𝑆𝑛𝑠
∗ 𝑎𝑠

∗ + 𝑆𝑛𝑠𝑎𝑠𝑆𝑛𝑟
∗ 𝑎𝑟

∗)=0 

𝑁

𝑛=1

 

We get 

∑(𝑆𝑛𝑠𝑆𝑛𝑟
∗ − 𝑆𝑛𝑟𝑆𝑛𝑠

∗ )=0 

𝑁

𝑛=1

 

Since neither 𝑎𝑠 nor 𝑎𝑟 is zero, the above two conditions can be satisfied only if  

∑ 𝑆𝑛𝑠𝑆𝑛𝑟
∗

𝑁

𝑛=1

= 0          𝑠 ≠ 𝑟 

Therefor, the dot product of a column of the scattering matrix of a lossless junction with the 

complex conjugate of any other column is zero. 

 

 

Now since, as and ar they are independent, if we choose as equal to ar and from this relation, 

so in this equation when we substitute as equal to ar we get, summation of Sns into Snr 



conjugate plus Snr into Sns conjugate is equal to zero. And if instead, we choose as equal jar 

that means with ar equal to real, that means this is as is purely imaginary and ar is real, if we 

chose as and ar in this form, then we get another equation and we get, summation of Sns Snr 

conjugate minus Snr Sns conjugate equal to 0. 

Now in this equation, you see that, we are getting the sum of these 2 terms and, here we are 

getting the difference of these 2 terms and in the both cases right hand side is equal to 0. So, 

neither as nor ar is zero, the above 2 conditions can be satisfied only, if we have summation of 

Sns Snr conjugate is equal to 0. and s is not equal to r. so, this can be put in this form therefore, 

we find that the dot product of a column of a scattering matrix of a lossless junction. With the 

complex conjugate of any another column is zero. So only condition we require is that, s is not 

equal to r that means the 2 columns are to be different. 
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We can also prove the properties of the S matrix for a lossless junction following a different 

approach  as follows: 

 We have,  

∑𝑏𝑛 𝑏𝑛
∗ =

𝑁

∑𝑎𝑛 𝑎𝑛
∗

𝑁

 

Therefore we can write  

[𝑏]𝑡[𝑏]∗ = [𝑎]𝑡[𝑎]∗ 

[𝑎]𝑡 [𝑆]𝑡[𝑆]∗[𝑎]∗ = [𝑎]𝑡[𝑎]∗ 

[𝑆]𝑡[𝑆]∗ = [𝑈] 

 



 

Now whatever, we discuss so far regarding the properties of the lossless junction, this can be 

derived using a different approach which is as follows, we have for a lossless junction. 

summation of bn bn conjugate, is equal to summation of an an conjugate. And therefore, this 

term is essentially transpose of b into b conjugate and similarly, an conjugate. Can be written 

as transverse of a and a conjugate. 

Now if we substitute b to be equal to sa and then we take the transpose we get, a transpose s 

transpose, s conjugate, a conjugate, equal to a transpose a conjugate. That means this term will 

be a unity matrix. 
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∑(𝑆𝑛𝑠𝑎𝑠 + 𝑆𝑛𝑟𝑎𝑟)

𝑁

𝑛=1

(𝑆𝑛𝑠𝑎𝑠 + 𝑆𝑛𝑟𝑎𝑟)
∗ = |𝑎𝑠|

2 + |𝑎𝑟|
2 

|𝑎𝑠|
2 ∑ 𝑆𝑛𝑠

𝑁

𝑛=1

𝑆𝑛𝑠
∗ + ∑(𝑆𝑛𝑟𝑎𝑟𝑆𝑛𝑠

∗ 𝑎𝑠
∗ + 𝑆𝑛𝑠𝑎𝑠𝑆𝑛𝑟

∗ 𝑎𝑟
∗) 

𝑁

𝑛=1

+ |𝑎𝑟|
2 ∑ 𝑆𝑛𝑟

𝑁

𝑛=1

𝑆𝑛𝑟
∗ = |𝑎𝑠|

2 + |𝑎𝑟|
2 

∑(𝑆𝑛𝑟𝑎𝑟𝑆𝑛𝑠
∗ 𝑎𝑠

∗ + 𝑆𝑛𝑠𝑎𝑠𝑆𝑛𝑟
∗ 𝑎𝑟

∗)=0 

𝑁

𝑛=1

 

[𝑆]𝑡[𝑆]∗ = [𝑈] can be written as 

∑ 𝑆𝑘𝑖𝑆𝑘𝑗
∗

𝑁

𝑘=1

= 𝛿𝑖𝑗 

𝛿𝑖𝑗 = 1  for 𝑖 = 𝑗     and 𝛿𝑖𝑗 = 0   for 𝑖 ≠ 𝑗  

Therefore,  



∑ 𝑆𝑘𝑖𝑆𝑘𝑖
∗

𝑁

𝑘=1

= 1 

and 

∑ 𝑆𝑘𝑖𝑆𝑘𝑗
∗

𝑁

𝑘=1

= 0 

for 𝑖 ≠ 𝑗 

 

 

 

So, s transverse s conjugate equal to u can be written as summation k equal to 1 to N, Ski Skj 

conjugate is equal to delta ij. Now this delta ij is equal to 1 for i equal to j and delta ij is equal 

to 0 for i not equal to j. and therefore, whenever i equal to j., we can write k is equal to 1 to N 

Ski Ski conjugate is equal to 1. So, this the condition we derived earlier, this essentially 

represents the dot product of the elements of 1 column, with the conjugate of the same column 

that means the Ith column. And when i is not equal to j, that means the columns i and j are 

different in that case, if we take the dot product of the Ith and Jth column, Ski and Skj conjugate 

then this summation becomes zero. 

(Refer Slide Time 29:54) 

We have [
𝑏1

𝑏2
] = [

𝑆11 𝑆12

𝑆21 𝑆22
] [

𝑎1

𝑎2
] 

𝑆11 =
𝑏1

𝑎1
|
𝑎2=0

   Since 𝑎2 = 0, we have 𝑉2
+ = 0 



𝑆11 =
𝑉1

−

𝑉1
+|

𝑉2
+=0

 

Therefore, at the junction we can write 

𝑉1
+ + 𝑉1

− = 𝑉2
−  and 

1

𝑍1
(𝑉1

+ − 𝑉1
−) = 

𝑉2
−

𝑍2
 

 

 

Now let us consider one example to explain some of the things that we have discussed in this 

lecture, so we take this example, scattering matrix for the junction of 2 transmission lines, so 

it is shown here, here we can see a junction between 2 transmission line, this transmission line 

has the characteristic impedance of Z1 and this is characteristic impedance of Z2. And this is 

S11, and S22 these are essentially the reflection coefficient at the junction. And S21 and S12 

these are the transmission coefficient for the junction. 

And let us find out these S parameters S11, S12, S21, S22, so we have b1, b2 this is equal to 

S11, S12, S21, S22 in to a1, a2. And from this matrix relation we see that, S11 is essentially 

b1 by a1 when, a2 equal to 0. Now we have defined a2 to be V2 plus divided by root z0 to or 

here it is z2. So when a2 equal to zero. It means V2 plus is equal to 0. So we can write similarly, 

V1 can be written as V1 minus by root z1 and a1 can be written as V1 plus divided by root z1 

and hence, S11 we can write as V1 minus divided by V1 plus when V2 plus equal to zero.  

Now if we take, this junction we can write, the voltage on the left hand side of the junction. It 

is V1 plus, plus V1 minus. On the right hand side of the junction we have already argued that, 

V2 plus is zero, so we can write, V1 plus V1 minus is equal to V2 minus, and if we equate the 

currents, then we can write, 1 by z1 V1 plus minus V1 minus this is equal to V2 minus by z2. 
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Therefore,  𝑉1
+ + 𝑉1

− =
𝑍2

𝑍1
(𝑉1

+ − 𝑉1
−)  

and 𝑆11 =
𝑉1

−

𝑉1
+|

𝑉2
+=0

=
𝑍2−𝑍1

𝑍2+𝑍1
 

In the same manner, 

 𝑆22 =
𝑉2

−

𝑉2
+|

𝑉1
+=0

=
𝑍1−𝑍2

𝑍2+𝑍1
= −𝑆11 

𝑆21 =
𝑏2

𝑎1
|
𝑎2=0

 

𝑆21 =
√𝑍1

√𝑍2

𝑉2
−

𝑉1
+|

𝑉2
+=0

 

𝑉1
+ + 𝑉1

− = 𝑉2
− 

𝑉1
+ − 𝑉1

− =  
𝑍1

𝑍2
𝑉2

− 

Therefore,  2𝑉1
+ = (1 +

𝑍1

𝑍2
) 𝑉2

− 

𝑉2
−

𝑉1
+|

𝑉2
+=0

=
2𝑍2

(𝑍1 + 𝑍2)
 

𝑆21 =
√𝑍1

√𝑍2

2𝑍2

(𝑍1 + 𝑍2)
=

2√𝑍1𝑍2

(𝑍1 + 𝑍2)
 

𝑆12 = 𝑆21 

 

 



And therefore, rearranging the terms we can write, V1 plus plus V1 minus is z2 by z1, V1 plus 

minus V1 minus and therefore, S11 which is V1 minus divided by V1 plus, when V2 plus equal 

to zero. This can be put in this form, z2 minus z1 divided by z2 plus z1. And this is same as 

the reflection coefficient at the junction. And if you proceed in the same manner, you can show 

that, S22 is equal z1 minus z2 divided by z1 plus z2 and this is equal to minus S11. 

Now let us evaluate S21, S21 is b2 by a1 when, a2 equal to zero, and this can written once, we 

substitute b2 and a1, we can write V2 is V2 minus by root z2, and a1 is V1 plus by root z1. So, 

it can be written as S21 is equal to root z1 by root z2, V2 minus by V1 plus for V2 plus equal 

to zero, so we have seen that V1 plus plus V1 minus is equal V2 minus and from the current 

relationship we can write 1 by z1 V1 plus minus V1 minus is equal to V2 minus by z2.and this 

can be once, we take z1 in this side we can write, in this form. 

And therefore, if we add this 2, we get 2 V1 plus is equal to 1 plus z1 by z2 V2 minus, and 

therefore, V2 minus by V1 plus when V2 plus is equal to 0, is 2 z2 divided by z1 plus z2. So 

now we have this part evaluated and S21 we get, by scaling these with root z1 by z2 and then, 

we get S21 equal to 2 root z1, z2 divided by z1 plus z2 and since, this junction is the reciprocal 

junction we will have, S12 equal to S21. 
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In this example we find the reflection coefficient at the port 1 of a two-port for which the port 

2 is terminated to a short circuit 

Suppose  the S parameters for the given two-port be  

[
𝑏1

𝑏2
] = [

𝑆11 𝑆12

𝑆21 𝑆22
] [

𝑎1

𝑎2
] 

When port two is short circuited, 𝑉2
+ + 𝑉2

−=0 . Therefore, 

𝑎2 = −𝑏2 

𝑏2 = 𝑆21𝑎1 + 𝑆22𝑎2 = −𝑎2 

𝑎2 = −
𝑆21

1 + 𝑆22
𝑎1 

𝛤 =
𝑉1

−

𝑉1
+ =

𝑏1

𝑎1
= 𝑆11 −

𝑆21

1 + 𝑆22
 

 



 

We now consider second example, where what we do we find the reflection coefficient at the 

port 1 of a 2 port, when the port 2 is terminated to a short circuit, so let the S parameters for 

the 2 port we given, as S11, S12, S21, S22. And next what we do, in this 2 port we connect a 

short circuit, at the port 2. So when we put a short circuit, at the port 2. V2 becomes 0 and V2 

is V2 plus, plus V2 minus so, when this term becomes zero, essentially a2 becomes equal to 

minus b2, and now if we take this b2 is equal to S21 a1 plus S22 a2 this can be written as minus 

a2 and from here, we can solve a2 equal to minus S21 divided by 1 plus S22 a1 and if you 

consider b1 then b1 is equal to S11 a1 plus S12 a2. 

So, the reflection coefficient is V1 minus divided by V1 plus which is b1 by a1 and can be 

found as S11 and we replace a2 by this term, so S11 minus S21 divided by 1 plus S22. 


