
System Design Through Verilog
Dr. Shaik Rafi Ahamed

Department of Electronics and Electrical Engineering
Indian Institute of Technology, Guwahati

Dataflow and behavioral modeling
Lecture - 15

Examples of dataflow modeling

In the last lecture, we are discussing about the Dataflow Modeling. So, we have discussed

about the dataflow modeling of some combinational circuit such as multiplexer, decoder, then

half adder, full adder, ripple carry adder.

(Refer Slide Time: 00:57)

So, the next adder is Carry Lookahead Adder, CLA. So, the drawback of the ripple carry

adder is the carry will propagate through the stages, as a result of that the total propagation

delay depends upon the number of stages. In general, if you want to add 2 n bit numbers, then

the total propagation delay is n times that of the full adder.

So, it is the drawback of this ripple carry adder. To avoid that, we can use this carry

lookahead adder ok, where regardless of the number of stages, the delay caused for the

performing the addition will be same.

So, what is the idea behind this carry lookahead adder? So, if I take any ith stage and i+1

stage, this is typically a fully adder and we are considering this as ith stage ai, bi, ci and output

will be ci plus 1; in this output is si. This is a typical ith stage. We can see from this the

previous this one also.

(Refer Slide Time: 02:48)

So, here, you can see here for the zeroth stage these are 0, a0, b0, output is s0, input is c0,

output is c1. For the first stage, these are 1 1 1 1 and this is 2. So, like that if I take the ith

stage, this is ci, ai, bi, si, ci+1. Now, here as the name implies, we are going to generate all the

carrys at a time ok, instead of generating this c1 first and then c2 and then c3 and so on, we

will generate all the carries simultaneously.

So, in order to generate these carries simultaneously, so what is the logic that we have to

follow. If I consider this ith stage only, so when does this ci+1 becomes 1? This is basically

adding three numbers, ai + bi + ci. So, this will give 2 bits sum and carry; this will give ci+1, si.

This is sum bit and this is carry bit.

So, we are not interested in the sum bit. Let us forget about this. So, when does this carry bit

will be 1; this ci+1? ci+1 is equal to 1, if any two bits are 1, so among these three, at least two

bits has to be 1. So, among all the eight combinations, what are the combinations? So, this is

ai, bi, ci, if I take all the combinations 0 0 0, 0 0 1, 0 1 0, 0 1 1, 1 0 0, 1 0 1, 1 1 0, 1 1 1.

Among all these combinations, so what is this sum ci+1; when will this be 1?

So, 0 plus 0 plus 0 is 0, there is no carry; 0 plus 0 plus 1 is 1; sum bit is 1, carry is 0. This is

also sum bit is 1, carry bit is 0. Here, we will get carry bit 1, sum bit is of course 0. If you

want write this sum also, we are not interested here; but I will write this. So, this is 0, this is

1, this is 1, this is 0 and here, also because only 1 input is 1, carry is 0, but sum is 1. Here 2

inputs are 1, so carry is 1, sum is 0. Here also carry is 1, sum is 0. Here both will be 1. This is

the truth table of a full adder right.

So, the condition for ci+1 to be 1 is so here at least two inputs has to be 1. This is 1, this is the

combination, where this outputs ci+1 is 1. This is another combination; this is another

combination. So, out of these eight combinations, in four combinations, ci+1 is equal to 1.

So, in order to represent this using, the Boolean expression, ci+1 is equal to we can derive in

terms of a, b, c. But I am going to derive in terms of exclusive OR and AND operation so that

I can define some terms like carry propagate and carry generate. So, one condition is if a and

b if I assume that both a and b’s are 1, I can write this ai, bi.

So, if both are ones, then only the ci+1 is 1. If anyone of this input is 0, ci+1 is 0. If I write only

this condition ai, bi so this will cover these two combinations. These two combinations will be

covered by simply ai, bi because in these two combinations, both ai, bi are 1; but there are two

more combinations in which ai, bi are not 1, still ci+1 is 1.

So, how to cover these 2? If I write simply ci+1 is equal to aibi, it will cover only these two

combinations; but I have to cover these two combinations also. So, for that, I have to add

some more extra term plus. So, what are these two combinations in which ai is not equal to bi.

So, ai is not equal to bi, still ci is equal to 1. This can be represented by ci (ai exclusive or with

bi). So, in these two combinations ai is not equal to bi, so ai exclusive or with this 1, so one of

this one is 0, so this will be 1. This operation is 1 and if ci is equal to 1, then this product term

is equal to 1. If ci is also 1, this product term is 1; thereby, this ci+1 is equal to 1. So, what are

the two conditions under which the ci+1 is generated is if ai, bi both are 1, then is one condition

or if ai is not equal to bi and ci is equal to 1.

So, if I want to write in the words, statements, we can write ci+1 is equal to 1, if ai is equal to

bi is equal to 1 or ai is not equal to bi and ci is equal to 1. So, this statement can be mapped

onto the Boolean expression using this, ai is equal bi is equal to 1 is ai bi; ai is not equal to bi is

ai exclusive OR bi; ci is equal to 1 into ci and this AND is there, this is AND operation here.

This is OR is there, this OR operation.

So, this expression for the ci+1 is equal to ai bi + ci (ai exclusive OR bi). So, I am going to

define this as gi as bi AND bi plus ci pi, where gi is ai bi is called as carry generate. So, this

will generate the carry and pi is ai exclusive OR bi, this is called carry propagate.

So, this is carry generate and this is carry propagate because this is going to propagate the

carry of this ci. So, in terms of gi and pi, ci+1 is gi plus this. So, I can generate the ci+1 from ai,

bi, ci, then what about si? So, for a fully adder, what is the expression for the sum? si is

nothing but exclusive or of all the three inputs; ai exclusive or bi exclusive or ci.

But ai exclusive OR bi we are calling as propagate signal. So, you can simply call this one as

pi exclusive OR with ci. So, in order to design this carry lookahead adder, the very first step is

you have to generate all the generate signals and propagate signals given a’s and b’s and c’s,

first we have to generate g’s and p’s.

So, after that, you have to find out all the carrys, then after that we will find out the sum. So,

there are three steps in the carry look ahead adder. The first step is you have to produce all the

generate signals and propagate signals, using some logic. Then, the second step is using these

generate and propagate signals, you have to generate all the carrys simultaneously.

The third step is using these carries and this ci, we have to generate all the sums. So, we will

discuss now how to generate this all the carrys simultaneously.

(Refer Slide Time: 12:47)

So, if I consider these 4-bit lookahead carry adder, CLA, so the input is first 4-bit number a3,

a2, a1, a0, b3, b2, b1, b0 and also, will be given the input carry also c0, these are available. So,

very first step is here you have to generate all the propagate and generate signals. So, what is

g 0? In general, gi is aibi; aibi is gi and ai exclusive OR bi is pi. So, g0 is a0b0; g1 is a1b1; g2 is

a2b2; g3 is a3b3 and then, propagate signal pi is equal to ai exclusive OR bi.

So, what is p0? It is a0 exclusive OR with b0; p1 is equal to a1 exclusive OR with b1; p2, a2

exclusive OR with b2; p3, a3 exclusive OR with b3. The first step is computing carry generate

and propagate signals. This is your step 1. So, regardless of the number of bits, we have only

three steps unlike ripple carry adder. In case of CLA, we have only three steps only.

The first step is we will generate all the generate signals and propagate signals. If it is 5-bit,

we will generate g4 and p4 also. If it is 6-bit, we will generate g5, p5 also. So, for this what is

the circuitry? We require AND gate. All these will be generated simultaneously because these

are available.

So, this all g signal can be generated using AND gate. This will be generated by exclusive

OR gate. Of course, the delay of exclusive OR gate is more than that of AND gate. So, what

is the computation time to perform this step 1? The computation time for this one is T XOR

gate because parallelly all will be generated. So, this is a0 b0 because these are all available,

this will generate g0. Similarly, we have g3, using a3b3, a0b0 will get p0 so on up to a3b3, we

will get p3.

So, all these will be generated parallelly; but because this delay time is more, after this time

of TXOR gate. So, all g’s and p’s will be available. Of course, these g’s will be available before

the p’s are available. So, if I wait up to TXOR because without generating the p’s, I cannot

generate the all carries. We are going to follow the second step.

In second step, we are going to use all g’s and p’s. Even though, if generate this g’s a little bit

faster than this p’s, so you have to wait until these p’s are generated. So, after a time of TXOR

seconds, all the p’s and g’s will be generated. Now, we will proceed for the second step,

generate all the carries.

Now, what are the inputs for this carry generator? We have g’s and p’s, even we have c0 also.

So, what is the expression for ci+1 is equal to ci + pi ci. So, c0 is the input which is given here

available. So, you find out c1 first. How to generate c1. So, i is 0, so c0 + p0, this is gi + pi ci; g0

+ p0 c0.

So, this g0, p0 are generated in the first step and c0 is already available along with the a’s and

b’s. So, I can generate this c1 after some time. What is the time taken to generate this c1 is one

AND operation, one OR operation. Now, c2 is given by g1+ p1 c1. If I compute this c2 using

this expression, then the c1, so after generating the c1 only, I can compute the c2.

But here in this step, I want to generate all the carries simultaneously. For that, you have to

substitute this c1 here; g1 + p1. What is c1? g0 + p0 c0. So, that we know this p1, g1, g0, p0 which

are generated in the first step and c0 is available at the starting of this design. So, we can

generate c2 after a time of this logic gates. So, c2 will be generated after time of the time taken

to perform these all Boolean operations.

Then, c3 is g2 + p2 c2, this is equal to g2 + p2 c2 is nothing but we have to substitute this p2 (g1

+ p1 (g0 + p0c0)). You can further simplify this expression so that you will get the simplified

circuit. So, this is equal to g1 + p1g0 + p1 p0 c0 and this will be g2 + p2 g1+ p2 p1 g0 + p2 p1 p0 c0;

then finally, the cout c4 is the last output. So, this is given by g3 + p3 c3, this is equal to g3 + p3;

c3 is from the previous expression, g2 + p 2 g 1 + p 2 p 1 g 0 + p 2 p 1 p 0 c 0.

So, finally, we will get g 3 + p 3 g 2 + p 3 p 2 g 1 + p 3 p 2 p 1 g 0 + p 3 p 2 p 1 p 0 c0. So, we are

going to generate all the carries; c0 is given as input carry, then we will generate c1, c2, c3, c4

using these Boolean expressions; this is the second step. So, what is the circuitry required for

this one? So, this depends upon only c0, p’s and g’s. We have generated four p’s, four g’s and

then c0.

(Refer Slide Time: 22:19)

Carry generation network, if I call as CGN. So, basically, we have nine inputs; out of which

this is c0 line, this entire line is vertical line is c0 and this is g0, we have generated in step 1; g

1, g 2, g 3 you have generated in step 1. Similarly, p 0, p 1, p 2, p 3 you have generated in the

step 1. So, what is the expression for c 1? We have derived c 1 as g0 + c0 p0.

So, this was the expression, we have derived; g 0 + p 0 c 0. So, simply this requires c 0 p 0

AND gate. This dot represents a connection. This is c 0 p 0 and then, you have to add with g 0.

This is g 0. So, this will generate your c 1.

Similarly, what is the expression for c2 is g 1 + c 1 p 1. This is equal to if we substitute this c1

here, g 1 + g 0 p 1 + p 1 p 0 c 0. So, we can have this previous one is we have c1 p 1. So, c 0 p 0 is

there, this term is already there here. So, we can take that term. This term is nothing but p 0 c

0, that you have to AND with p 1, so that this entire term is generated. Then, g 0 p 1; second

AND term is generated, then g1.

So, these three if you OR we will get c 2. Similarly, you can generate c 3 and c 4 using logic

gates. See here, among all the paths, the path which takes the maximum computation time is

the time taken to generate all the carries; C max if I call as for example, if I take between these

two, which one is the longest path? This is one OR gate followed by an OR gate, AND gate

followed by OR gate, this is also another AND gate, another AND gate, another OR gate. So,

this path is taking more time.

So, like that, if you take the circuit diagram of c3, c4 also. So, among all the paths, the

maximum time taken by the signal to propagate from this c0, g’s and p’s to c1, c2, c3, c4 that

computation if I call as c max. So, this c max is the maximum computation time required to

generate all the carries. So, in the first step, what is the computation time is T XOR. Here also

we call as T max; instead of C max, T max or you can also call as otherwise because you are

calling this as CGN, you can call as TCGN.

Now, you have generated all the carries and the last step is once if we know the carries, I will

represent this entire circuitry in a block. This I will call as CGN. What are the inputs and

outputs of CGN? We have four p’s, four g’s and one c0; c0, g0, g1, g2, g3, p0, p1, p2, p3 and what

are the outputs? c1, c2, c3, c4.

So, after the first step, using this AND gate and exclusive OR gate, we have generated all p’s

and g’s. Second step using this carry generation network, we have generated c1, c2, c3, c4. So,

what is the last step? We have to generate the final sum and final carry c4; c4 is the final carry

of course.

So, what about s0, s1, s2, s3. As I have defined s0 is a0 exclusive OR with b0 exclusive OR with

c0; this is nothing but g0 exclusive OR with c0. So, this you can take from here itself. This if

you exclusive OR because a0 b0 is exclusive OR of g0. So, this is exclusive OR this will give

sum bit s0. Similarly, s1 is g1 exclusive OR with c1. So, c1 is here. So, you exclusive OR with

this g1. This g1 is nothing but this g1. I have not shown the connection. This will give s1.

Similarly, c2 if you exclusive OR with g2, we will get s2; c3 exclusive OR with g3, we will get

s3 and this is c4 is the final carry output . So, this is like c4 is the final output; sum bits are s3,

s2, s1 s0 .

So, here also we have generated these in three steps. We have generated s0, s1, s2, s3 and then,

c4 is the final output. Third step is generation of all these sum bits. So, what is the time taken

to generate all these sum bits? Only exclusive OR operation. So, this is another TXOR.

So, the first step also we will take TXOR time to generate all g’s and p’s; second step we will

take TCGN, this CGN depends upon this Boolean expression that we have derived; this

Boolean expression. To implement this Boolean expression, what is the maximum time

taken? That will be TCGN and to generate the last step, third step is TXOR.

So, the total computation time of this CLA is 2TXOR if first and third step requires the same

time TXOR + TCGN, the time taken to compute this carry generation network. So, this is fixed

regardless of the number of bits.

You can take 10-bit addition, you can take 20-bit addition, you can take 100-bit addition. This

is same; whereas, this is slightly there will be increase in this TCGN, if we increase the number

of bits. So, in that way, we can reduce this carry propagation time. As a result of that, this

carry lookahead adder also can be called as fast adder.

Now, if you want to realize or if you want to model this carry lookahead adder using gate

level modeling, it becomes very difficult because here we have a lot many gates. But using

this dataflow modeling, we can easily write the VERILOG code. Now what is the VERILOG

code using dataflow modeling?

(Refer Slide Time: 33:07)

So, I will write module CLA 4-bit dataflow, I will give the name as CLA_ 4-bit df. So, what

are the total inputs and outputs? We have c4 final output and then, we have four sum bits, sum

s, then we have four a’s, four b’s, c0 is the input carry. This we have already used it in the

dataflow modeling of lookahead carry, here we have used these.

This a’s, b’s are available as the inputs and c0 is available; outputs are s3, s2, s1, s0 and final

carry. Then, you can define the values like output c4 a scalar. So, I am writing separately, you

can combine with vector also and other outputs are [3 : 0] s because we have s 0, s 1, s 2, s 3.

Similarly, input c0 is a scalar and another vector inputs are we have [3 : 0] a , b; both a and b

are 4-bit numbers. Then, we require some wires also. So, what are the wires required? You

see here the first step is generation of g’s and p’s using this exclusive OR gates. Second step

is using these Boolean expressions will generate all the carries, third step is using ‘exclusive

OR gate will generate all sum bits.

So, the first block here will be something like these p and g generators. What are the inputs

for p and g generators. We have two 4-bit numbers; a0 a1 a2 a3, b0 b1 b2 b3 and then, we have

another c0 as another input.

So, using this, what we are going to generate? We are going to generate all p’s and g’s; p0 p1

p2 p3, g0 g1 g2 g3; then, this we are going to connect to carry generation network. So, this will

generate all the carries c1 c2 c3 c4, then we have final sum generation. So, this will final

outputs sum s0, s1, s2, s3 and final carry c4. So, these are overall inputs and these are overall

outputs.

In between, we are using some variables, this you have to define as a wire. As your discussed

in the earlier classes also, these are not accessible, so we have to define these as a wire. So,

how many wires are required total? So, we require four for p’s, four for g, four for carries.

So, wire [3 : 0] p , g; wire [4 : 1] c; this is p3 to p0, g3 to g 0, c4 to c1, c 0 is actually input carry;

this is about the initialization. So, what are the different key words required to generate the

first step? This is step 1, step 2, step 3. So, for step 1, so what is there inside the circuitry? We

know that this p’s and g’s will be generated using AND gates and exclusive OR gates.

So, I will write assign; first I will generate all p’s. So what is the expression for p0? p0 is

exclusive OR operations, g0 is AND operations. Here you can write instead of this suffix 0,

you can write p 0 is equal to a0 exclusive OR b0, I am going to use only single assign for all

the p’s; p1 is equal to a1, we can write in the bracket also. It is up to you, a1 exclusive OR b1 ,

p2 is equal to a2 exclusive OR b2 , p3 is equal to a 3 exclusive OR b 3, then semicolon.

So, p’s are over; similarly, you have to write assign g’s, g 0 is AND operation a 0 AND with b0

, I am going to use only single assign for this and operation also g1 is equal to a1 AND with b1

, g2, g2 is equal to a2 AND with b2 , g3 is equal to a3 AND with b3 semicolon. So, second

assign is for all g’s. So, this will give the step 1 and in the step 2, you have to use carry

generation circuit.

Assign c1 is equal to what is the expression for c1? c1 is g 0 + p 0 c0; g 0 + is OR operation is

this p 0 AND c 0. Here, also I can use single assign using commas. Similarly, you have to

write c2 is equal to basically you have to write this Boolean expression; then for c3, this

Boolean expression; for c 4, this Boolean expression.

So, we have only AND operation, OR operations only. So, AND operation with this, OR

operation with this. So, I am not writing c2. So, this is a Boolean expression. We have comma

c3, this is another Boolean expression; comma c4, is another Boolean expression using AND

and OR gates semicolon. So, this is second step. In third step is to generate s0, s1, s2, s3 assign.

This c4 is generated here, s0 is equal to this is exclusive OR between p0 and c0 right; p 0

exclusive OR within a0, single assign s1 is equal to p1 exclusive OR with a1, s2, p2 exclusive

OR with a2, s3, p3 exclusive OR with a3. Then, this is end module.

So, if you want to write this dataflow modelling, we have a simple code; whereas, if you want

to use this gate level modelling, it becomes very difficult because we have lot of gates here.

So, this is about the VERILOG code using dataflow modelling for a Carry Lookahead Adder.

Thank you.

