
Lec 10: Fundamentals of 1D Photonic Crystal 

 
 Hello students, welcome to lecture 10 of the online course on Photonic Crystals 

Fundamentals and Applications.  

 

 

Today's lecture, we will cover the fundamentals of 1D photonic crystals. So, here is the 

lecture outline. We will have a quick recap of the photonic crystals, the overview. We will 

discuss photonic crystals as semiconductors of light. We will also draw the analogy between 

photonic crystals and solid state physics. 



 

 We will discuss about the timeline of photonic crystals. We will provide overview of block 

waves and then go into details of 1D photonic crystals and take some examples like the 

multilayer film. their block modes and dispersion relation. So, in the context of this lecture 

these two gentlemen have made significant contribution that is the picture of Felix Bloch. 

 

 So, he developed a theory that describes electron waves in the periodic structure of solids 

and the same theory has also been applied for photonic crystals where we study about light 

propagation  in periodic structure of dielectrics. And this is a picture of Eli Avelinovich. So 

he co-invented the concept of photonic bandgap along with S. John and he made the first 

photonic bandgap crystal. So his contribution to the field of photonic crystal is really 

enormous. 

 
 So look into the first topic which is a quick recap. So a photonic crystal is basically a 

material that has been structured to process a periodic modulation of the refractive index 

so that the structure influences the propagation as well as confinement of light within it. So 

the picture here shows a multilayer film which is basically a one-dimensional photonic 

crystal.  

 

 

 

 

 

 



 

So you can see the green and the blue  material they are basically two different types of 

material and they have been repeated periodically along the z direction okay and here A 

marks the period of this periodicity of the structure right.  So, there is a direct analogy 

between you know semiconductor physics and the photonic crystals. So, photonic crystals 

are also sometimes called you know semiconductor crystals for light. So, as you understand 

the periodicity can be in  one dimension, two dimension or three dimension and you know 

that way the photonic crystals are also called one dimensional, two dimensional or three 

dimensional photonic crystals. So, in fact you know you can actually make quite complicated 

structures like these okay and they possess very interesting optical properties. So, this we 

have already seen. 

So, photonic crystals are periodic optical structures that are designed to affect  the motion 

of photons in a similar way that periodicity of a semiconductor crystal affects the motion of 

electrons. 

 Okay always remember the different colors they represent materials with different 

dielectric constant. So, 1D it is very clear that you just have the periodicity in one dimension 

okay the material is uniform in other two dimension. When you go for now 2D photonic 

crystals what you see you basically have you know  columns okay of two different materials 

which are repeated along the two dimension and here you can think of you have small cubes 

of different materials which are periodically repeated in all three axis or all three 

dimensions. So now let us have a quick overview of the photronic crystal.  

 



 

So let us start with 1D you know periodic structure that include stacks of identical parallel 

planar multilayer segments, something like this. So, these are often used as gratings that 

could reflect optical waves at certain angles and also as filters that can selectively reflect 

certain frequencies. So, you can see that if you consider the bright region to have refractive 

index n1 and the dark region to have refractive index n2, the profile refractive index profile 

shows you that n1 is lower than n2 and that is typically the convention. So, the target 

material has higher dielectric constant. And you can measure the periodicity like this, you 

know, from this point to this point. 

 

 So that is given as capital lambda. So that is the periodicity along z direction, along x and y 

direction the material is homogeneous.  

 

 

 

 

 

 

 

 

 



 

You can go for 2D 2D photonic crystals. They look like this as you have seen. So they 

basically include parallel rods as I have already discussed. 

So you can actually have parallel rods or you can have parallel cylindrical holes. And this 

kind of cylindrical holes are important to modify the characteristics of optical fibers as we 

have discussed in the initial lectures and those are called holy fibers right. You can also 

think of you know three-dimensional structures where you can have arrays of cubes, 

spheres or even holes of different shapes which are organized in lattice structures which 

are very similar to those found in the natural crystals. So, when we go into more details, we 

will see those exact orientation, but you can think of all the possibilities of different unit cell 

structures that could repeat in 3 dimension to form a 3D photonic crystal. You can think of a 

renuance in 2 dimension to form 2D photonic crystals. 

 

 

 

 

 

 

 

 

 



 
 So, we come back to our study and our objective today. So, we are mainly focusing on the 

1D photonic crystal in this particular lecture. So, here you can notice that we are having 

periodic variation in the refractive index ok and it is assumed that this kind of you know 

variation will extend indefinitely like so infinitely long periodic array. But when you think  

in practice practice you want to make this device you will see that these devices of this 

photonic crystals they have finite size it means you only can have you know certain fixed 

number of layers so as in normal crystals the periodic structure okay this all in this figure 

also have a unit cell here here you can identify this dark and the bright region or layer as 

one unit cell and that is basically getting repeated periodically right so this  unit cell once 

repeated can give you the whole crystal structure. So as discussed in 1D photonic crystal 

these two adjacent layer give you the photonic crystal and you can move along that 

direction that is the grating vector  you can say, okay? And here the periodicity is given by 

this capital Lambda, okay? So it is called the period of the periodicity, okay? And you can 

generate the whole 1D photonic crystal once you repeat this unit cell using this period in 

this particular Z dimension, fine? Now let's look into the concept where, you know, photonic 

crystals are considered to be semiconductors of light. 

 

 

 

 

 

 



 
 So optical waves which are inherently periodic  interact with periodic media in a unique 

way, particularly when the scale of the periodicity becomes comparable to that of the 

wavelength of light. And if you remember the initial lecture where we discussed about the 

differences between optics, photonics and nanophotonics, we discussed that photonics is 

that particular science branch of optics, you can say. where we are talking about materials 

which are having dimensions of the order of the wavelength of light and this is where 

exactly photonic crystal comes into the picture. The photonic crystal has got periodicity 

which is comparable to the wavelength of light. So, here what happens you know some 

spectral bands will emerge where light waves cannot propagate through this medium at all 

ok. 

 

 That means the propagation has got severe attenuation ok. And the waves with frequencies 

lying within those forbidden bands are called photonic bandgap. They behave in a manner 

which is very similar to that of total internal reflection but difference is that photonic band 

gap is applicable for all directions. Means the light can have any incident angle but still it 

will be completely reflected. But when you compare photonic crystals it is when you 

compare this with total internal reflection where  the reflection only takes place for a 

particular set of incident angle for you know the light. 

 

 So, the dissolution of the transmitted wave is a result of the destructive interference among 

the waves scattered by the elements of the periodic structure in the forward direction. So, 

this effect basically extends over finite spectral bands rather than just occurring for  single 

frequencies. Now, this phenomena is analogous to the electronic properties of crystalline 

solids such as semiconductors. So, in that case the periodic wave associated with an 

electron travels in a periodic crystal lattice and energy band gap often materialize. So, if you 

put semiconductors and photonic crystals side by side. 



 
 

 You can say the semiconductors are basically periodic array of atoms whereas photonic 

crystals are basically periodic variation of dielectric constant. So you can have this variation 

along 1 dimension, 2 dimension or 3 dimension. The length scale for semiconductors are 

basically atomic length scale that means you know you are talking in terms of Armstrong 

okay. When you come to photonic crystal you are basically having length scale which is 

comparable to lambda and lambda for visible light is typically from 400 nanometer to you 

know 780 nanometer. So you are typically in those micrometer kind of length scale. 

 

 

 

 

 

 

 

 

 

 

 



 
 Semiconductors are natural structures whereas photonic crystals are artificial structures. 

Semiconductors control the flow of electron whereas photonic crystal controls the 

propagation of electromagnetic wave or light. and semiconductors have caused this 1950s 

electronic revolution whereas photonic crystals are bringing up lot new more frontiers in 

modern optics and as i mentioned in the initial lectures  that even in the emergence of 6G 

technologies photonic crystal is going to play a very very important role in terms of you 

know terahertz topological photonic insulators based devices So, because of this analogy 

you can say that the photonic periodic structures have come to be called as photonic 

crystals. Right. And photonic crystals enjoy a whole raft of applications. 

 

 They can be used as web guides, filters, resonators, lasers, you know, fibers, routers, 

switches, gates, sensors, etc. So you can think of, you know, making any kind of, you know, 

optical communication system using photonic crystals. So that way, photonic crystal is a 

very, very handy tool. concept and it is a very handy tool for the optical engineers. Now, let 

us put a comparison between the photonic crystals and the solid state physics, okay. 

 

 

 

 

 

 

 



 

 
 The similarity between the physics of photonic crystals and solid state physics gives us the 

possibility to draw the analogy between some properties and computation method which 

are applied in you know solid state and photonic crystal physics. The most important 

similarities are something like you know periodic modulation of refractive index in 

photonic crystal forms a lattice which is similar to the atomic lattice of solid state. The 

behavior of photons in a photonic crystal is similar to electron and hole behavior in atomic 

lattice and due to the lattice periodicity both photonic crystal and solid state provide band 

gap and these are  the range of frequencies that particle or photonic crystal will not allow 

inside that structure. So from the theoretical point of view, determination of the 

eigenfunctions in a photonic crystal is very similar to the calculation of particle wave 

functions in the solid state. So this similarity is used to obtain the photonic band structure. 

 

 

 

 

 

 

 

 

 



 
 So the method that you follow to calculate electronic band structure in  semiconductors you 

can actually use the same thing same concept here to obtain the photonic band structure for 

photonic crystals but there are some essential differences as well between photonic crystals 

and solid state physics so one main difference is the particle energy distribution So 

electrons in semiconductors or solid state physics, they obey the Fermi Dirac distribution 

while photons obey Bose-Einstein distribution. Now Bose-Einstein statistics basically apply 

only to particles that do not follow the Pauli's exclusion principle. So particles that follow 

Bose-Einstein statistics are called bosons. which have integer number of integer value of 

spin okay. But in contrast particles that follow Fermi Dirac statistics are called fermions and 

they have half integer spins right. 

 

 Besides electrons in solid state physics are affected by the intracrystalline field which leads 

to the necessity of taking into account  right while photons are not affected by that 

intracrystalline field. most important property which determines the practical significance 

of the photonic crystals is basically the presence of the photonic bandgap. So, photonic 

bandgap engineering is really an art that optical engineers master by changing the 

constituent unit cells and the periodicity to match their requirement. Now why that is 

particularly important? The photonic band gap refers to the energy or the frequency range 

where the light propagation is prohibited inside the photonic crystal. So when the radiation 

with frequency inside the photonic band gap incident on the structure, it appears to be 

completely reflected. 

 

 

 

 



 
 So let us have a brief look at the photonic crystal timeline. We have briefly seen this in the 

introductory lecture, but let us have a quick overview again. So, in 1987, the predictions of 

photonic crystals were made, okay, and this were done by Sajeev John and Ali Avalonovich. 

They have written these papers on you know strong localization of photons in certain 

dielectric super lattices and also inhibited spontaneous emission in solid state physics and 

electronics. So, after that in 1990 the computational demonstration of photonic crystal was 

done by K. 

 

 M. Ho. 1991, Yablonovitch demonstrated experimentally the first microwave photonic 

crystal. If you remember, we have studied the scaling properties of electromagnetism and 

that is why it was possible to demonstrate the properties  for you know microwave 

photonic crystals  in instead of making you know photonic crystals for light so in 1995 large 

scale 2D photonic crystals were made invisible so this is where the technology for you know 

uh photonic crystals which handle light was developed and then in 1998 a 3D photonic 

crystal was designed to operate at infrared wavelength. In 1998, Philip Russell at the 

University of Bath, England demonstrated photonic bandgap fibers. So this is the historic 

timeline of photonic crystal research and after that slowly the photonic crystal research has 

gained momentum. So let us now go into the details of 1D photonic crystals. 

 

 

 

 

 



 

 
 So let us analyze the photonic crystals by considering the simplest case, which is the one-

dimensional periodicity. And we apply the principles of electromagnetism and symmetry 

that we have developed in the previous lectures. So even in this simple system, we can 

discern some of the important features of photonic crystal in general, something like the 

photonic band gap and the modes that are localized around defects. So the optical 

properties of a one-dimensional layered system may be familiar by, but by expressing the 

results in the language of band structures and band gaps, okay, a new phenomena such as 

omnidirectional reflectivity can be discovered. ok and this is where you know the concept of 

1D photonic crystal is important. 

 

 

 

 

 

 

 

 

 

 



 

 
 So, what you are getting is omnidirectional reflectivity not only reflectivity at certain angle. 

So, although you know you have this concept of you know layered systems ok you are 

actually  focusing on the photonic band gap and band structure to obtain this 

omnidirectional feature. And 1D photonic crystal is the easiest one to study as you go on 

more complicated systems like 2D or 3D photonic crystals, same concept will be applied but 

things will get more complicated. So, the simplest possible photonic crystal  can be thought 

of as an alternating layer of materials of different dielectric constant something like a multi-

layer film as you see in this particular figure. So, here if you think the permittivity along x 

and y a same remains constant, but then permittivity along z is basically changing along z 

right. 

 

 So, 𝜀(𝑧) is changing periodically  So the system consists of alternating layers of materials 

blue and green which have different dielectric constant and the spatial period is marked as 

a. So if you can consider two layers as the unit cell so this is the periodicity a which is 

basically the total thickness of these two layers. Now we consider each layer is uniform and 

it extends to infinity along the lateral dimensions that is along x and y and the periodicity in 

the z direction also extends to infinity. So these are needed for the theoretical calculation 

but if you think in practice if you want to make a device you will have finite dimensions 

along x and y and also along z. 

 

 

 

 



 
 Now this arrangement is not a new idea. Lord Rayleigh published one of the first analyses 

of the optical properties of multilayer film, right? So that was pretty, you know, in 1800s. So 

as we will see, this type of photonic crystal can act as a mirror. also known as Bragg mirror 

for light with a frequency within a specific range and it can localize light modes if there are 

any defects in the structure. So, this concepts are commonly used in dielectric mirrors and 

optical filters. So, you can see here what is happening you have a high and low dielectric 

material of thickness d1 and d2 respectively and then this pattern is repeated over here. 

 

 So, you say n equals 1 here the first period this is the second period. The refractive index is 

marked as n1, n2. Outside it is air and then you have this infinitely long periodic structure 

and then finally you have a substrate supporting the structure. So when there is an incident 

light you see some part is getting reflected you can call that as A. some part getting 

transmitted but again some part of that transmitted light when it hits this particular 

interface between this high and low medium. 

 

 a portion of it will get reflected and the remaining gets transmitted and then you will have 

this repeated reflection transmission and then and finally, you get one reflection. So, this 

continues. So, what happens you are basically getting reflected light from all those different 

interfaces. Now, if all these reflected light are in phase and then they  do a constructive 

interference you basically see a reflection right so that behaves like a dielectric mirror but 

now if you change the width of the of each layer  or the periodicity in such a way that all this 

reflected light destructively interfere with each other and they cancel out it means you will 

not see any reflection or you may see reflection at a particular frequency and remaining 

light is getting transmitted. 

 

 



 
 So, that behaves like a filter. So, you will have a notch kind of a filter where only a particular 

frequency is reflected remaining is getting transmitted. So, that is how you can use the 

periodic structures as dielectric mirrors and optical filters. So, the traditional way to 

analyze the system as I mentioned. you have to consider you know the sum of multiple 

reflections and refraction that occur at each of these interfaces ok. But when you try to 

analyze the bench structure for you know more complicated  photonic crystals like 2D and 

3D you have to use a slightly different approach. 

 

 

 

 

 

 

 

 

 

 

 

 



 
 So we will try to generalize that approach and show it using Bloch waves in 1D photonic 

crystal first. So the periodicity of a photonic crystal implies that any property at a location z 

will be same as that  𝑧 ± Λ location or even 𝑧 ± 2Λ or 𝑧 ± 3Λand so on so it means there is a 

translational symmetry along the z direction that is along 1D Now the EM waves that are 

allowed to propagate along z through this photonic structure are called the modes of the 

photonic crystal. So the ones which are allowed to propagate are basically the solution. of 

electromagnetic waves in this particular system. So, that is why they are also called the 

modes of the photonic crystal. 

 

 

 

 

 

 

 

 

 

 

 



 
 So, you can write that the permittivity is varying as this that 𝜀(𝑧+Λ)  is basically  𝜀(𝑧). It 

means the permittivity is repeating periodically while Λ is the period. So they have a special 

waveform. They must bear the periodicity of the structure and are called bloch waves. 

 

 okay. So, such a wave for electric field 𝐸𝑥 has the form of 𝐸𝑥(z,t) okay. So, E along x and its 

property along z and it is also a function of t has got A(z) which is basically an amplitude 

function that contains the information of the periodicity of the structure  okay. That is A(z) 

will also be periodic, the amplitude will have the periodicity of period Λ and it propagates 

along z. So, A(z) varies with the periodic refractive index which is nz.  

 

 

 

 

 

 

 

 

 

 



 

So, this refractive index is obtained from the dielectric constant which you have seen in the 

previous slide and if you remember the relationship that the refractive index is nothing, but 

square root of the dielectric constant or epsilon. 

 

 So, you can also write that 𝐴(𝑧+Λ)  is equal to 𝐴(𝑧). So, this is how you know if you consider  

a field ok getting perturbed by the object. So, wherever the wave front is entering the 

material  so any material will have refractive index more than one that means light basically 

slows down inside the material as compared to the light that is traveling in the air so your 

wave front will get actually distorted like this so this is how you can actually get the 

impression of that dielectric material which is present in the path of the light okay  

 

 



 
Now, if you consider field in a periodic structure like this. So, this is how the dielectric 

material are arranged periodically and when a  you know light with you know face front 

going like this you can actually see that the amplitude also acquires that periodicity right. 

So, that was the concept that we discussed earlier that 𝐴(𝑧+Λ) will be equal to 𝐴(𝑧). So, the 

waves in periodic structures take on the symmetry and periodicity as their host  material  

so if you think of you know periodic crystal there if you incident light beam so the light will 

also you know take on the same kind of symmetry and periodicity in the amplitude as it is 

there in the host photonic crystal. 

 

 

 

 

 

 

 

 

 

 

 



 
 So 1D photonic crystals are basically structures as you have seen that the properties are 

constant in orthogonal dimension and only it is changing in one direction. So we will 

consider first a homogeneous system which is invariant to the arbitrary translation of the 

coordinate system. So, for this medium an optical mode is basically a wave that is unaltered 

by such a translation. So, it only changes by a multiplicative constant of unity magnitude 

which is the phase factor. 

 So, if you consider plane wave which is exp(−𝑗𝑘𝑧) . is such a mode since upon translation by 

distance of d it becomes exp(−𝑗𝑘(𝑧+d)) . So, when you split this exponential into the two 

terms you get exp(−𝑗𝑘𝑑) exp(−𝑗𝑘𝑧). So, you are basically getting you know this phase factor 

exp(−𝑗𝑘𝑑) as eigenvalue of the translation operation. So, we can consider the on axis block 

mode okay where in this photonic 1D photonic crystal or 1D periodic medium you could see 

that this block mode is invariant to the translation by distance Λ along the axis of the 

periodicity. So its optical modes are basically waves that could maintain their form upon the 

translation and it is changing only by a phase factor which is given as exp(−𝑗𝑘𝑑) okay. 

 

 

 

 

 

 

 



 
 

 So you can write that this modes have this particular form. So, 𝑈z can be written as 𝑝𝐾(𝑧) 

exp(−𝑗Kz). So, what is 𝑈? 𝑈 is basically any field component it can be 𝐸𝑥 , 𝐸𝑦 , 𝐻𝑥 , or 𝐻𝑦. So, it 

is a very generic term it is showing any field electric or magnetic field any component along 

x or y in this case. What is capital K? This is a propagation constant and pKz is basically a 

periodic function of period Λ. So this form satisfies the condition that a translation Λ alters 

the wave by a phase factor which is given by exp(−𝑗KΛ) since the periodic function is 

unaltered by this translation. 

 

 

 

 

 

 

 

 

 

 

 



 

 
 So this kind of optical wave is known as bloch mode. The parameter  K, capital K which is 

denoted as the propagation constant or basically the wave factor or wave number in a 

periodic medium, okay. And it is specified, it specifies the mode and the associated periodic 

function which is pKz. So, this parameter K, capital K is called the block wave number. So 

once again what is the difference between this small k? Small k is the wave vector of the 

incident light and capital K is basically the wave number or wave vector you can say of the 

wave in a periodic medium. So the block mode is thus nothing but a plane wave which is 

exponential minus jkz. 

 

 with a propagation constant capital K modulated by a periodic function pkz, so which has 

the character of a standing wave. So, if this is the way you know the travelling wave is, so 

the standing wave pattern is the dotted line and you can actually find that this is the period. 

So, since a periodic function of period Λ can be expanded into a Fourier series as a 

superposition of harmonic functions of the form of exp(−𝑗 𝑚𝑔𝑧) where M is nothing but you 

know 0, ±1, ±2,…. and you can take small g as the spatial frequency. 

 

 So, g can be written as 2𝜋∕Λ. So, g is the spatial frequency and it is a measure how often the 

sinusoidal components as determined by the Fourier transform  So, the sinusoidal constants 

or components of the structure repeat per unit distance. So, that is g. So, it follows that the 

bloch wave is basically superposition of plane waves of multiple spatial frequencies like K + 

mg. So, here you can see this is a bloch mode. 

 

 here you can see the spatial spectrum of the bloch mode. So it has got one frequency K okay 

and you have K+g and K-g, K+2g, K-2g and so on okay. So the fundamental spatial frequency 

g of the periodic structure and its harmonics mg  added to the bloch wave number K, they 



constitute the spatial spectrum of the bloch wave which is shown here. What is m? m is 0, 

±1, ±2,…,  and so on. So, the spatial frequency shift which is introduced by the periodic 

medium. So the shift is here right, so this is analogous to the temporal shift or temporal 

frequency shift like Doppler okay that is introduced by reflection from a moving object. 

 
 if you take two modes with block numbers 𝐾 and 𝐾′ where  𝐾′ is given as 𝐾 + 𝑔 they are 

basically you know equivalent since they correspond to the same phase factor. So, if you 

find out the phase factor associated with this. bloch wave number exp(−𝑗𝐾′Λ) this can be 

written as 𝐾′ can be written as 𝐾 + 𝑔. 

 

 

 

 

 

 

 

 

 

 

 



 

 

 So, you can write it like this. So, this essentially gives you 1. So, you finally get exp(−𝑗𝐾Λ). 

okay, g if you remember g is coming from here 2𝜋∕Λ, so that is how this particular term gets 

into picture right. So, instead of g you are you are writing 2 pi okay, so g lambda instead of g 

lambda you are writing 2 pi. So, this is evident that since the factor exponential minus jgz is 

itself periodic and it can be lumped with the periodic function pkz, right. So, therefore, for a 

complete specification of all the modes, we only need to consider the values of capital K in a 

special frequency interval of width g equals 2𝜋/Λ. 

 

 So ideally the interval is starting from minus g by 2 to g by 2. So that is from minus pi by 

lambda to pi by lambda. So if you only consider this interval that can give you all 

information because after that it is repeating periodically. So this region is also known as 

the first Brillouin zone. right and is a commonly used construct when you study the 

dispersion relation. So, now that we have established the mathematical form of the modes 

as imposed by the translational symmetry of the periodic medium. 

 

The next step is basically to solve for eigenvalue problems which are described by the 

generalized Helmholtz equation right. So, it is basically the wave equation right. So, we have 

to find solutions for wave equation in this particular photonic crystal. So, those are the 

modes and those modes have their frequencies and only those frequencies are allowed to 

propagate inside the crystal. 

 

 Where there is no solution it means that frequency falls within the band gap ok. So for a 

mode with a block wave number 𝐾 the eigenvalues provide a discrete set of frequencies 𝜔 

and these values are used to construct the 𝜔−𝐾 dispersion relation and this is a dispersion 



relation as you can see the y axis is basically 𝜔. and what you have in the x axis is 𝐾 so it is  

𝜔−𝐾 dispersion diagram you can also see that you have plotted it for you know g equals 

2𝜋/Λ so you are considering g/2 to -g/2 to g/2 okay and then you are  you know the 

structure is repeating for integral multiples of g/2. The Eigen functions, so this figure here 

shows the dispersion relation as a multivalued periodic function with period g equals 2𝜋/Λ. 

and discontinuities at different K values, okay. So, you are seeing discontinuities here, you 

are seeing discontinuities here which are basically integral multiple of g/2. 

 

 So, here it is in g/2 into 1, here it is 2 into g/2, so that is g. So, you are actually getting 

discontinuities at all these points. So the eigen functions help us determine the block 

periodic function which is pKz for each values of omega associated with each K. So this 

diagram is particularly very very interesting and you are only bothered about the Brillouin 

zone basically because that contains all the information okay and you can have Brillouin 

zone. ranging from -g/2 to g/2 as we have described earlier. So, here also you can see that 

this region is marked at Brillouin zone and what is happening next is basically an extension 

of it okay. 

 

 

 

 

 

 

 

 



 

  

 So, when visualized as a monotonically increasing function of K like this okay you see that 

there is some discrete jump  okay at the values where K is basically integral multiple of g/2 

okay. So, these jumps or discontinuities basically correspond to the bandgap. So, this is 

bandgap 1, this is bandgap 2 okay. It means spectral bands are not crossed by the 

dispersion lines  okay in this case. So, you do not have any propagation mode existing at 

those particular frequencies which lie within the band gap. 

 

 So, the origin of discontinuities in the dispersion relation basically lies in the special 

symmetry that emerges when k = 𝑔/2. That is when the period of the medium  equals 

exactly half the period of the travelling wave. So, consider two modes with k equals ±𝑔/2  

and bloch periodic function 𝑝𝐾(𝑧)then can be written as   𝑝(±𝑔/2) (𝑧). So, you are replacing k 

which is the wave number of the propagating mode with g/2. So, this since this modes 

travel with the same wave number, but they are traveling in the opposite direction. 

 

 So, you can actually see the inverted version of the medium. So, what you are basically 

seeing is 𝑝(−𝑔/2) (𝑧)  will give you 𝑝(𝑔/2) (−𝑧) right. So they are basically inverted version of 

each other okay but these two modes are basically in fact one mode and they are same 

because they have the same block numbers which are different by g. So, for every g you get 

this same modes because g is your spatial frequency. So, it therefore follows that at the edge 

of the brilliant zone which is here and here there are two block periodic functions that are 

inverted version of one another. 

 

 

 



 

 So, you can see at the edges. okay since the medium is inhomogeneous or you can say 

piecewise homogeneous within a unit cell these two distinct functions they interact with the 

medium differently and therefore they have two different or distinct eigenvalues. That 

means they will have different values of 𝜔. So one is having, say, this value of 𝜔. The other 

one is having this value of 𝜔. 

 

 So they are not having the same frequency, although they have the same K value. And this 

actually explains why you have got this discontinuity in the 𝜔−𝐾 line across the boundary of 

the Brillouin zone. A similar argument could also explain the discontinuities that occur 

when 𝐾 equals the other integer multiples of g/2. So, you can also use the same argument 

here and so on. So, if you simply compare the dispersion relation of photon in vacuum 

which is given by you know this is the 𝜔−k diagram. 

 

 

 

 

 

 

 

 



 
 So, dispersion relation is very simple is given by 𝜔 equals ck. in periodic dielectric or 

photonic crystal you can see that the 𝜔−k diagram is basically follow a straight line but 

there are discontinuities in between and these are those photonic band gaps  so who is 

giving rise to these band gaps there is this repeating periodic structure they are giving rise 

to this forbidden zone so this particular bands of frequencies are not allowed to propagate 

inside the crystal.  

 

 

 

 

 

 

 

 

 

 

 

 



 

The band gap size dependent primarily on the difference in dielectric constant, frequency 

dependent primarily on the cell size. So, the difference in the tube material that you are 

using to construct the periodic crystal  that actually has a role in deciding the bandgap size 

and also the frequency dependent primarily on the cell size. you can look for high contrast 

alternative dielectric material that can give you wider bandgap okay so here you can see 

you know you are basically getting a complete bandgap it means the gap covers all the 

phases or all the values of k  So that also tells you one interesting thing that if a light of this 

frequency falls from any direction that is not going to enter the crystal rather it is going to 

get reflected. So it is an omnidirectional reflection that is possible if the frequency lies 

within this particular band gap. 

 

 

 

 

 

 

 

 

 

 



 

 So, one last time I will show you a pictorial representation of how waves behave inside a 1D 

photonic band gap crystal ok. So, PBG is photonic band gap ok. So, here you consider a wave 

incident on a 1D band gap material ok and you see that there is partial reflection coming 

from you know all the different interfaces. When the reflected waves are in phase and they 

reinforce one another, they basically combine with the incident wave and produce a 

standing wave. And if you remember from your school days, the standing wave does not 

propagate and it does not travel to the material, right? And this is how the frequency within 

the band gap does not propagate inside the material. 

 

 

 

 

 

 

 

 

 

 

 



 
Whereas if the wavelength is not in the 1D photonic band gap, what happens? The reflected 

waves that you get from all the different interfaces are basically out of phase and they 

cancel out each other.  

 

So, the incident light can freely propagate through this material, only it is slightly attenuated 

because some part of it is reflect loss in the reflection . which essentially cancel out each 

other, but then the transmitted intensity will have slightly less intensity than the incident 

light because of the attenuation So with that we conclude this lecture. So we will start about 

the discussion of analysis and engineering of 1D photonic crystal van structures in the next 

lecture. If you have got any queries or doubt regarding this lecture you can write an email to 



me at this particular email address mentioning MOOC and photonic crystal on the subject 

line. You 

 


