
Lec 11: Analysis and Engineering of 1D Photonic Band Structure 

 
 Hello students, welcome to lecture 11 of the online course on Photonic Crystals 

Fundamentals and Applications.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Today's lecture will be on analysis and engineering of 1D photonic band structures. So, here 

is the lecture outline. So, we will be briefly looking into the physical origin of photonic band 

gaps. We'll discuss about the size of the bandgap, how you can actually make bandgap 

narrow or wide depending on your application requirement. We'll also discuss about the 

evanescent modes in photonic bandgaps which are not able to propagate into the photonic 

crystal. 

 

 

 

 

 

 

 

 

 

 

 



 
 

 So let's first start with the physical origin of the photonic bandgaps. So we will begin our 

discussion with this multilayer thin film that we have seen in the previous lecture. So we 

considered this one-dimensional photonic crystal. with dielectric function of 𝜀(𝑧) okay that 

varies only along the 𝑧 direction right. 

 

 So along x and y it remains same. So if you remember our discussion from the previous 

lecture this green and blue alternating regions are basically showing you the different 

permittivity regions or different materials which are periodically repeated and the period 

here is a. So, each layer is uniform and extends to infinity along both x and y directions and 

the periodicity along z direction also extends to infinity. So, this is what is a 1D photonic 

crystal. Now, by applying the symmetry arguments, the electromagnetic modes sustainable 

to this crystal can be described. 

 

 

 

 

 

 

 

 



 
 So once again remember that the material is periodic along z direction and it is 

homogeneous in xy plane. So this basically allows us to classify modes using 𝐤∥, kz and n. So 

these are the three parameters. So 𝐤∥ is basically the wave vector in the plane. kz is the wave 

vector in the z direction and n represents the band number. 

 

 So, the wave vectors they specify how the mode transforms under translation operators 

and the band number increases with frequency. So, we can write the modes in the block 

form. So, you can write 𝐇 𝑛,𝑘𝑧,𝐤∥ (𝑟) to be 𝑒𝑖𝐤∥.𝛒𝑒𝑖𝑘𝑧𝑧𝐮𝑛,𝑘𝑧,𝐤∥(𝑧).  

 

 

 

 

 

 

 

 

 

 

 



 

 

So, this is basically a term that explains if there is any wave factor along if there is any wave 

propagation along the plane. 

 

okay. But usually here we consider all the wave factors along only the z direction, okay 

normal propagation. So, in that case this term gives you a 0 and this entire term 𝑒(𝑖𝐤∥.𝛒) will 

become 1. So, we will be basically dealing with this particular term. Now what is 𝐮(𝑛,𝑘𝑧,𝐤∥ )? 

So, un is basically called the envelope function that is basically also periodic. 

 

 And that we have seen that when a block wave hits, when a plane wave hits a periodic 

medium, the amplitude gets modulated with the same periodicity of that particular periodic 

medium or periodic crystal. So, you can see that 𝐮(z) can also be written as 𝐮(z + R) where R 

is the integral multiple of the special period which is a. Now because the crystal has 

continuous translational symmetry in the xy plane okay, the 𝐤∥ vector this particular wave 

vector can assume any value okay.  

 

 

 

 

 

 



 

 

However, the wave vector kz that is the vector along the z direction can be restricted to a 

finite interval okay and that interval actually tells you about the one-dimensional Brillouin 

zone because you know the crystal has discrete translational symmetry in the z direction 

right. So, it is the crystal is basically repeating after every period a. 

 

 So, you can actually restrict that you know wave vector kz within the first Brillouin zone. So 

using this prescriptions of the previous chapter, if the lattice vector is a�̂�, then the primitive 

reciprocal lattice vector can be written as (2𝜋/𝑎) �̂�, right? And the Brillouin zone is defined 

as, you know, ranging between −𝜋/𝑎  to 𝜋/𝑎. So this is a plot where you see you have done it 

for gallium arsenide bulk okay. So we are plotting it for k and ka/2𝜋. So, if you normalize it 

by this okay, so ka/2𝜋 will be ranging from minus half to half okay, that is why the scales are 

shown as minus half to half okay. 

Similarly, the frequency is also a normalized frequency, so this is 𝜔𝑎/2𝜋𝑐 okay. So, you can 

see that if you have gallium arsenide bulk okay, you do not have any band gap. But if you 

have you know a multilayer of gallium arsenide and gallium aluminum arsenide which are 

repeating okay periodically you find a very thin band gap or very narrow band gap. And if 

you have a multilayer formed by you know alternating layers of gallium arsenide in air you 

actually can have a very wide photonic band gap. So, we will come to the origin of the 

physical origin of the band gap to discuss how  and what are those factors which contribute 

to the band gap and why some band gaps are narrow and some are really wide. 

 

 

 



 
  

 Now we will consider that you know the waves propagate entirely in the z direction which I 

have already stated that this is an assumption when you take that you know the waves cross 

the sheets  of this dielectric at normal incidence. So, in that case, it becomes pretty simple. 

You can consider 𝐤∥ that is the wave vector in the plane to be 0. And only the wave vector 

along the z direction that is kz becomes important. So, removing all kind of possibilities of 

confusion, you can simply write kz as 0. 

 

 

 

 

 

 

 

 

 

 

 



 
 

 So, then we plot these three different multilayer films that I have already discussed okay. 

So, this is a system where you just have gallium arsenide bulk. So, you do not have a you 

know periodic variation of refractive index. So, it is like a you know homogeneous medium 

where the medium is uniform in all three dimensions and you can see that there is no band 

gap. So, here gallium arsenide and gallium aluminum arsenide the permittivity for gallium 

arsenide is 13 okay and this is 12. 

So, they do not have a large you know dielectric constant contrast. However, this one has 

much higher contrast between the dielectric constants of the two materials involved gallium 

arsenide and air. This gallium arsenide has 13 air is 1. So, you can actually see that larger is 

the contrast between the two materials that you are using for making your 1D photonic 

crystal wider will be the photonic band gap. So, n equals 1 tells you the first band, n equals 2 

tells you the second band and so on, fine. 

 

 

 

 

 

 

 

 



 
 

 

 So, you may ask that if gallium arsenide is bulk in this particular figure, okay, you have 

considered it as a homogeneous medium, okay, then what is the role of a here? You can 

actually consider any value a, but that actually does not make any difference because it is an 

homogeneous medium. And you already know that you know in a homogeneous medium 

the speed of light is basically reduced by the refractive index of that particular medium. So 

you can simply draw these light lines okay which are written as 𝜔(𝑘)=𝑐𝑘/n or you can write 

instead of n you can write √𝜀 right.  

 

 

 

 

 

 

 

 

 

 



 

Now, wave vector k will repeat itself outside this Brillouin zone. So, the normalized wave 

vector is taken from minus half to half okay and after that it repeats. 

 So, the light line actually folds back into the region when it reaches the edge. So, that is how 

you actually get this particular curves. So, one can regard this as simply and  eccentric way 

of re-leveling the solutions in which you know 𝑘 + 2𝜋/𝑎 is simply replaced by 𝑘.  So, you are 

not showing the solutions for the entire crystal you just showing it for one brilliant zone 

because you know the solutions repeat for you know 𝑘 + 2𝜋/𝑎. Here in this case the center 

plot is also a nearly homogeneous medium, but there is a slight difference between the 

permittivity. 

 

 So, that builds in that gap of frequency between the upper and the lower branches that is n 

equals 1 and n equals 2 right.  

 

 

 

 

 

 

 

 



 

And what happens in this gap? There is no frequency allowed in this particular gap. So, you 

know, regardless of this value of k, no frequency is supported. So, you can call this gap as a 

photonic bandgap. And when you go to the next figure, you can see that when the contrast 

increases, the bandgap significantly increases. 

 

 

 



 
 

 So, the first question is why does photonic band gap appear at all? So, you can understand 

this by you know analyzing the electric field mode profile for the states immediately above 

and below the photonic band gap. So here we are considering the gap between bands n 

equal 1 and n equal 2 and that occurs at the edge of the Brillouin zone that is where k is you 

know 𝜋/𝑎.   

 

 

 

 

 

 

 

 

 

 

 

 



 

So if you consider this one that is a very nice system because it is a small perturbed system 

from the you know homogeneous system because here the contrast is very little this is 13 

this is 12 right. So, here you can see that for k equals 𝜋/𝑎 that is at this particular edge at 

this point the modes have wavelength of 2a which is basically you know twice that of the 

crystal spatial period or you can say the lattice constant.  

 

 

 

 

 

 

 

 

 

 

 

 



 

So, there are two ways to center a mode of this type. 

 

 So, you can either position ok. the electric field in low permittivity region as you can see 

here. So, what happens you have positioned the nodes that is where the amplitude of the 

field is 0 at the low permittivity region. So, here blue is the high permittivity region and 

green is the low permittivity region and you can see all the nodes are basically lying in the 

low permittivity region ok. And, the other one is also possible like where you have the 

nodes lying in the high permittivity region. 

 

 So, these two possibilities are there right. So, any other position if you consider that would 

violate the symmetry of the unit cell about its centre. So, only these two you know 

variations you can think of. So, if you look into the electric field energy density you can say 

that the low frequency mode that is the mode of band 1 they concentrate their energy 

mostly in the high permittivity region right. for higher frequency mode, that is for band 2, 

you can see that the electric field density is mostly concentrated in the low permittivity 

region. 

 

 

 

 

 

 



 
 So, with these things in mind, it is understandable that why there is frequency difference 

between the two cases. So, the mode which is just under the photonic band gap will have its 

energy concentrated in the high permittivity region that is epsilon equals 13 region and the 

next band which is slightly above the band gap. okay that will have its energy concentrated 

you know in the low permittivity region. So, this we are talking about the top of the band 1 

and this is for the bottom of the band 2. So, this is just below the photonic band gap and this 

is just above the photonic band gap. 

 

 

 

 

 

 

 

 

 

 

 

 



 
 So, the bands above and below the gap can be distinguished by whether the energy of their 

modes is concentrated right. So, whether it is in high permittivity region or it is in low 

permittivity region. So, especially in 2 and 3 dimensional crystals the low permittivity 

region is air and for this reason it is convenient to refer  The band which is above the 

photonic band gap is referred to as air band and the bands which lie below the band gap is 

referred to as dielectric band. And this situation is very analogous or you can say this 

situation is analogous to electronic band structure of the semiconductors where you have 

conduction band and valence band above and below the band gap. 

 

 right. So, this is one more quick look all the electric field profile and their local energy 

density are plotted together. So, here you can see the electric field for mode at top of band 1 

as we told the nodes are in low permittivity region. So, that means the energy is mostly 

concentrated in the high permittivity region as you can see here. And for  the mode at 

bottom of band 2 which will have slightly different frequency than this one okay. There the 

node is at high permittivity region it means the majority of the energy is focused in the low 

permittivity region fine. 

 

 

 

 

 

 



 
 So, the modes associated with the lowest band gap  Okay, is shown in the band structure as 

you can see here. Okay, so in this case, these are called the air bands and this is the dielectric 

band and this is the photonic band gap. and what happens in this case we are considering 

gallium arsenide and air multilayer structure. So, you again can think of you know n equals 

1 where the nodes are in air region okay and n equals 2 that is you know for band 2 the 

energy is mostly the nodes are at the high permittivity region. So, if you look into the energy 

density of the electric field for  the top of band 1 that is here you can see that the most 

energy is concentrated in the high permittivity dielectric and for the bottom of band 2 you 

can see there cannot be anything in the air region. 

 

 

 

 

 

 

 

 

 

 



 
 So, they are basically mostly along the side of the high permittivity material ok. So this is in 

contrast to what we saw in case there is a dielectric material present okay. This is typically 

the case for 2D and 3D photonic crystals where you know air is used as the low permittivity 

region to create the largest contrast of the dielectric constants. So why we need to do this as 

I mentioned it can give you a large dielectric contrast and as a result of that you can get a 

very wide photonic band gap. So this can be extended to describe the configuration with a 

large dielectric constant. 

 

 So you can see here  that for 2D and 3D photonic crystals where the low permittivity region 

is typically considered to be air, there the electric field is mostly concentrated. towards the 

edge of the high permittivity region and this is what is the difference when you have you 

know high and low permittivity regions in photonic crystals with lesser contrast and when 

you use air as the low permittivity region as shown here. So, we understood that the gap 

basically arises from the difference in the field energy localization  And we can still refer the 

upper band as the air band and the lower band as the dielectric band. So this is the first 

photonic band gap that you can see between n equals 1 and n equals 2, that is between band 

1 and band 2. You can again have a gap between this and this. 

 

 

 

 

 



 
 So that will be called another photonic band gap and so on. So what you see here is that this 

is a numerically calculated photonic band structure of a multi-layer film where the lattice 

constant is taken as a and alternating layers have different widths. So in this particular case,  

they have considered gallium arsenide layer and air as the you know unit cell. So, epsilon 

equals 13 that is a gallium arsenide layer has got a width of 0.2 a and the air portion okay 

that is epsilon equals 1 layer has got the remaining you know width that is 0.8 a and when 

you consider that this is what you get as the band diagram. So we can conclude this with the 

observation that in one dimension the gap occurs between every set of bands at either the 

brillouin zone's edge or at its center. So here  you can actually have the band that is the gap 

that is created at the center of the Brillouin zone, whereas here the gap is created mainly at 

the edge of the Brillouin zone.  

 

 

 

 

 

 

 

 

 



 

 

So now we'll move on to the next subtopic, which is the size of the band gap. So the extent of 

a photonic band gap can be characterized with its frequency width, which is Δ𝜔. 

 

 but it is usually not a very useful measure. So, all of our results are scalable as we have 

studied the scaling properties of Maxwell's equation that is valid. So, all these results are 

scalable to different frequencies and good thing is that all this you know band diagram that 

are discussed here or you can see they are all normalized ok normalized frequency versus 

normalized wave vector. So, if you expand a crystal by a factor of s, you can understand that 

the band gap of that crystal will now have a width of Δ𝜔/𝑠. So, that is how the scaling will 



work. So, a more useful characterization which is basically independent of the scale of the 

crystal is the gap-midgap ratio. 

 

 
 So, what is that gap-midgap ratio? As the name suggests, if you consider 𝜔m as the 

frequency at the middle of the gap, you can define this gap mid-gap ratio as Δ𝜔/𝜔m . So 𝜔m is 

nothing but the middle frequency or mid-gap frequency, okay. So it is generally expressed 

as percentage. So you can say, you know, if  you can say 10% gap, it means gap to mid-gap 

ratio is basically 0.1. Now, if the system is scaled down or scaled up, all of the frequencies 

will scale accordingly, but this gap mid-gap ratio will remain same. That is the beauty of 

talking in terms of this gap mid-gap ratio. 

Thus when we refer to the size of the gap we are talking about not Δ𝜔 we are talking about 

Δ𝜔 by 𝜔m that is this particular gap mid gap ratio. 

 

 

 

 

 

 

 

 



 

 

So for the same reason we can also see that you know the frequency and the wave vector 

that are used for any band diagram are basically dimensionless. So you represent frequency 

as 𝜔𝑎/2𝜋𝑐 and wave vector is 𝑘𝑎/2𝜋 okay. 

 

 So, the dimensionless frequency is basically. So, this one what is this? This is basically you 

know if you consider 𝜆 to be equal to you know 2𝜋𝑐/𝜔. So, 2𝜋𝑐/𝜔. So, this one is nothing, 

but 𝑎/𝜆. So, 𝑎 is what? 𝑎 is the periodicity. 

 

 So, it is length scale. 𝜆 is also length scale. So, it is a dimensionless quantity. So, that way you 

can find out the ratio how it helps. So, if you want to have a the gap band gap at a particular 

wavelength say 1550 accordingly you can find out what will be a. Because you will be 

obtaining the ratio say 𝑎/𝜆 comes out to be 0.2. So, 𝑎/𝜆 is 0.2 if lambda is 1.55 micrometer 

or 1550 nanometer you can find out what should be the period accordingly. right. Now, in a 

multilayer film that we have seen with weak periodicity, we can derive a simple formula for 

the size of the band gap from the perturbation theory.  

 

 

 

 

 



 

Now, what is this weak periodicity? So, we have seen that it is possible to relabel k plus 

2𝜋/a as k from the phenomena of quasi-phase matching, right? So, it is periodic and the 

wave vector repeats after you know 2𝜋/a. So, it tells you that states at the same frequency 

can couple to one another if their k values are different or the k values differ by multiples of 

2𝜋/a. 

 

 And in such case a weak periodicity A is introduced into the medium. So this is the case we 

have been dealing with. So in this case you can actually obtain a simple formula for the size 

of the band gap from the perturbation theory. So we are emphasizing general principles of 

periodic systems that will apply equally well to the more complicated two and three-

dimensional structures which we will be discussing later on. And it is worthwhile, however, 

to point a few exceedingly useful analytical results that are only possible for the special case 

of one-dimensional problems. 

 

 Now, suppose that the two materials that we have considered in a multilayer film have 

dielectric constant 𝜀 and 𝜀 + Δ𝜀. And their thickness, the thickness for the material with 

permittivity 𝜀 is 𝑎 − 𝑑 and the other material which has got permittivity 𝜀 + Δ𝜀 has got 

thickness of 𝑑. So, 𝑎 − 𝑑 and 𝑑 you add them together you get the period 𝑎 fine. Now, either 

the if either the dielectric contrast is weak that means if Δ𝜀/𝜀 is very small or as compared 

to 1 or the thickness of that you know higher permittivity layer 𝑑 by epsilon is small  then 

you can write the gap mid gap ratio between the first two bands as this. 

 

 So, this is ∆𝜔/𝜔m ≈∆𝜀/ε.(sin(𝜋𝑑/𝑎))/𝜋. So, this quantifies that even at an arbitrarily weak 

periodicity can give rise to a band gap in  one dimensional crystal.  



 

 

So, for one of the structures that shown below, if you consider that ∆𝜀 by 𝜀 is 1 by 12. So, 

which is that structure? This is that structure, right? So, because this one has got 13, this has 

got 12. So, we consider the lower one to be ε and this is basically 12 plus 1. So, that is  your 

∆𝜀 is 1 right and if you consider that 𝑑 equals 0.5a that means both the materials are of 

equal thickness okay. Then the formula that we saw here it predicts a band gap of 2.65 

percent that means you know the gap mid gap ratio is 0.265 okay. Now 0.0265 ok, but when 

you do you know more accurate numerical calculation you also obtain 2.55 percent. So, we 

will be talking in terms of percentage here that the gap is 2.65 percent. So, you can see that 

the numerical calculation is pretty accurate to our analytical formula that we obtained for 

perturbation theory.  

 

 

 

 

 

 

 

 



 

So this is that you know magical formula that gives us result which is pretty close to you 

know numerical solutions. So remember that the equation could predict the gap mid-gap 

ratio okay and it will be maximized for 𝑑 = 0.5𝑎 that means when the both thicknesses of the 

two types of material are equal. But this is valid only for small 𝜟𝜺/𝜺. So, for low contrast 

multilayer film this one works well. Now, for the two materials with refractive indices which 

are refractive index is basically square root of epsilon. So, if you consider n1 and n2 as the 

refractive indices and the thicknesses are d1 and d2. 

 

 So, d2 can be written as 𝑎 −𝑑1. So, when you have normal incidence gap that is maximized 

when d1 n1 will be equal to d2 n2 or you can say that n1 sorry you can say that d1 is a n2 over 

n1 + n2. So, if you satisfy this condition you can actually maximize the gap. So, in this 

particular case you can also find out that the mid gap frequency ωm is nothing but 

(𝑛1+𝑛2)/(4𝑛1 𝑛2 ).2𝜋𝑐/𝑎, right.  

 

 

 

 

 

 

 



 
So the corresponding vacuum wavelength, so from ωm, you can also find out what is a 

vacuum wavelength, which is λm. So you find that to be 2𝜋𝑐/𝜔m. And that satisfy the relation 

that λm/𝑛1 is basically 4𝑑1 or you can say that d1 the thickness of the first layer is λm/4n1. 

That means the thickness of the first layer is basically quarter wavelength, wavelength of 

light in that medium. So, λm/𝑛1 is basically the lambda in that particular medium n1. 

Similarly, you can also see that d2 is basically 4m by, sorry, d2 equals λm/4𝑛2. It means if the 

individual layer thicknesses are exactly equal to their quarter wavelength, okay, in that case, 

you can maximize the band gap. 

 

 Okay, so for this region, you know, this type of multi-layer film is also called quarter wave 

stack. The reason why the gap is maximized for quarter wave stack is related to the 

property that the reflected waves from each layer are all exactly in phase at the mid-gap 

frequency. Okay,  So, you can think of it your quarter wavelength. So, full path you are 

getting half the wavelength and that way you can think of ok. So, what happens the reflected 

waves from each layer ok are exactly in phase when you are at the mid gap frequency. 

 

 So for the gap between the first two bands for a quarter wave stack the mid gap ratio gives 

you something like this. So delta M gap mid gap ratio becomes this. So ∆𝜔/𝜔m =4/𝜋 sine 

inverse of modulus of the difference between the two refractive indices divided by the sum 

of the two refractive indices.  

 

 

 

 



 

So, here you can see that we have considered this is a pretty wide band gap and it has got a 

very large dielectric contrast 13 is to 1, but here d1 and d2 are equal to half of a. 

 

 So, this is not a quarter wave stack right. So, numerically  we find that this structure 

produces 51.9% gap. So, that is the gap, fine. So, we usually accept this as a pretty wide band 

gap. 

 

 But is that the maximum? The answer is no. Instead, if you would have chosen d1 equals 

0.217, okay, and d2 would be, you know, a minus that,  that will make the structure a quarter 

wave stack and you would have got a band gap which is 76.6 percent okay and as you can 

compute from you know this particular equation.  

if you simply round it off and consider d1 equals 0.2a it is nearly a quarter wave stack it is 

not exactly a quarter wave stack but you can say it is like nearly quarter wave stack and 

then if you  do a computer simulation okay you can find out that the band gap comes out to 

be pretty close to what we predicted 76.3 percent okay so don't look at this scale and this 

scale here this scale is from 0 to 1 whether whereas this one is from 0 to 0.3 so this is a 

much larger band gap than this one okay So here you can see this band gap is more typically 

from 0.2 to 0.4 yeah 0.45 or something like that. Here you can see it is from 0.15 to 0.26 or 

something like that. So this typically gives you much wider band gap. So what we 

understood is that larger contrast is good but then as you move as you make quarter wave 

stack you can really get wide band gap. 

 

 



 

 

 

Now we move on to the understanding of evanescent modes in photonic bandgaps. So, the 

key observation of the previous discussion were that the periodicity of the crystal that 

induced a gap in the band structure. 

 

 No electromagnetic modes are allowed to have frequencies that lie within the photonic 

bandgap. But if this is indeed the case, what happens when we send light which are having 

frequency within the photonic band gap, right? Something should happen to the light, right? 



So no purely real wave vector exists for any mode at that frequency. Instead the wave 

vector is complex and hence the amplitude decays exponentially into the crystal okay. So 

the wave is not able to propagate inside the crystal. So when you say that there are no states 

in the photonic bandgap we mean that there are no extended states like the mode which 

were given by this kind of equation earlier okay. 

 

 So here also we will consider the case that we are talking about only you know z direction 

waves. So you can simply take 𝐤∥ to be 0. and you can also replace that kz by k. So, when we 

are writing it about evanescent modes you can simply write Hn kz 𝐤∥ to be equal to e to the 

power ikz okay, but then the amplitude decays. 

 

 
 So, e to the power minus kappa z. So, this is where you know the decay factor  exponential 

decay factor comes from. So what we are doing here, we have taken this earlier equation of 

the block mode. 

 

 Their 𝐤∥ is 0. So this term gives you 1. That is good. kz can be replaced as k. That is this one. 

So we are having e to the power ikz. That is fine. And then this k is also having because it is 

complex wave factor, you will have two components k plus then the attenuation factor i 𝜅. 

 

 So, that is what is giving you e to the power -𝜅z. So, the wave actually exponentially decay 

inside the crystal. the imaginary component of the wave vector this one causes the decay on 

a length scale of 1/𝜅.  

 

 



 

So, let us understand how this evanescent modes originate and what determines this 𝜅. So, 

this can be accomplished by examining the bands in the immediate vicinity of the gap. So, if 

you focus on the right hand plot okay like this one  okay you can try to approximate the 

second band near the gap okay by expanding 𝜔(𝑘) in powers of 𝑘 about the zone H that is k 

equals 𝜋/𝑎. 

 

 

 

 

 

 

 

 

 

 

 

 



 
 So, let us do that.  So, what you will see because of time reversal symmetry, the expansion 

cannot contain any odd powers of k. So, to the lowest order you can write ∆𝜔 okay is 

nothing but 𝜔2 (𝑘)−𝜔2 (𝜋/𝑎) that is at this particular point okay and you can write this as 

𝛼(𝑘−𝜋/𝑎)2 and you get 𝛼(∆𝑘)2. Okay, so what is 𝛼? 𝛼 basically is a constant depending on the 

curvature of the band. So it's basically tells you about the second derivative of the band. 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

 And let us now see why this complex wave vector originates. So, this is a schematic 

illustration of the complex band structure of the multilayer film. The upper and lower blue 

lines correspond to you know bottom of band 2 and top of band 1 respectively. And the 

evanescent states occur on the red line that you see here, okay, which extends along the 

imaginary k-axis. So you can consider this as your real k-axis and a  and a orthogonal line 

that is coming out of this plane which is shown like this that marks the imaginary Δk and the 

maximum decay occurs roughly at the center of the gap. 

 

 So, for frequencies which are slightly higher than the top of the gap that is Δ𝜔 is positive for 

them. Okay you can consider that you know Δk is purely real and you are basically within 

the band 2. However, when Δ𝜔 is negative okay that means you are basically within the gap 

okay and that makes your Δk to be purely imaginary. And this states decay exponentially 

since you can consider Δ𝑘 = 𝑖𝜅. So, as we traverse the gap. the decay constant 𝜅 grows as the 

frequency reaches the gap centers and then disappears again at the lower gap edge right. 

 

 

 

 

 

 



 
 So, by the same token larger gaps usually result in a larger 𝜅 at the mid gap okay. So, there 

will be less penetration into the crystal that has got a larger band gap. So, for a multilayer 

film minimum penetration is therefore achieved by the quarter wave stack as described 

earlier because quarter wave stack gives you the largest band gap. So, they will allow 

minimum penetration of light into that crystal as we understood. All the evanescent modes 

are you know. genuine solutions of the eigen problem they diverge as z goes to plus minus 

infinity depending on the sign of 𝜅. 

 

 

 

 

 

 

 

 

 

 

 

 



 
 So, consequently there are no physical ways to excite them within an idealized crystal of 

infinite extent. So, even as in modes will not be able to you know exist. a defect or an edge in 

otherwise perfect crystal can terminate this exponential growth and therefore sustain an 

evanescent mode. So, that is where you can actually introduce a defect in your crystal and  

trap some light which still have frequency within that photonic band gap. If one or more 

evanescent modes is compatible with the structure and symmetry,  of a given crystal defect, 

we can then excite a localized mode within the photonic band gap. So that is how you can do 

band gap engineering by introducing defects and you can make cavities, you can make a lot 

of you know other like waveguides and other applications from photonic crystal. 

 

 So a general rule of thumb is that we can localize states near the middle of the gap  much 

more tightly than you know any states which are near the gaps edge okay.  

So, anything that you do around the center of the gap you will be able to handle more 

localization of those states.  

 

 

 

 

 

 

 



 

So, with that we will stop here and we would like to discuss the applications of 1D photonic 

crystal in the next lecture. If you have got any queries regarding this lecture, you can drop 

an email to my email address shown on the slide okay and mention MOOC and photonic 

crystal on the subject line. Thank you. 


