
Lec 26: Index-guiding photonic crystal fibers 

 
 

 Hello students, welcome to lecture 26 of the online course on Photonic Crystals 

Fundamentals and Applications.  

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Today's lecture will be on Index Guiding Photonic Crystal Fibers. So, here is the lecture 

outline. So, we will discuss about index guiding photonic crystal fibers, their dispersion 

relation, we will talk about endlessly single mode fibers how they work. the scalar limit and 

also we will discuss about the linearly polarized modes.  

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

So, let us look into this in more details we have briefly seen index guiding photonic crystal 

fibers in our previous lecture. 

 

 So, we will quickly go into the details of it in this lecture. So, if you remember so this is the 

easiest photonic crystal fiber to understand ok. So, this employs  index guiding. So what 

happens here you can see okay you can actually create this is the core and you can create 

you know array of holes that reduce the refractive index of this cladding  and that is how 

you know you can take the cross section and think of it that n1 is high and n2 is low and the 

light is basically guided through modified total internal reflection. 



 

 So, that is a very easy understanding of this holey fiber ok. So, here we need to ensure that 

the air holes are in a periodic pattern.  

 

So, people choose triangular lattice usually ok and this is otherwise a uniform dielectric 

medium. So, if you consider a special period of a that is between you know there is a 

periodicity  of the holes and if you consider the holes to have a radius of 0.3a, whereas the 

background is silica where epsilon equals 2.1. So, you can think of these parameters that 

will give you a holey fibre. So, what is happening at the core? The core is simply you know 

the location. with a missing hole in the center. So, you can ideally think of a hole air hole the 

same air hole can be here then it makes a completely uniform you know holey array or 2D 

photonic crystal. But you if you introduce a defect by removing this air hole where the laser 

pointer is currently placed then you create this solid core for this holey fiber. 

 

 

 

 

 

 

 

 



 
 So, one might hope that it would be sufficient to consider some average index contrast 

between the core and the cladding, but in fact it is not the case you require a full 

understanding of the band diagram to analyze you know how holey fiber can actually help 

you guide light. Now because the fiber has translational symmetry along the fiber axis 

which is considered as z axis okay you can take kz that is the z component of the wave 

vector to be conserved and then you can write the field in the usual block form you can 

write H(x,y,t) equals H(x,y) okay and it propagates along z direction and it is oscillating in 

time. So, this is how you can write the magnetic field as a function of space and time okay. 

So, then we plot you know the 𝜔 versus kz that is basically this diagram the inset  okay and it 

tells you about the dispersion relation. So, if you carefully look into this diagram what you 

see it is a usual 𝜔-k plot. 

 

 So, this is where the normalized frequency is mentioned and this is where the normalized 

wave vector okay and here if you see carefully that there is a black line and there is another 

solid line. So, black line corresponds to the light line  okay and the other line the straight 

line corresponds to the guided mode. Now what you can see that the difference between the 

frequency of you know in airline and light line  light line and the guided mode is very, very 

small. So, you can actually plot the difference Δ𝜔 as function of the wave vector kz and this is 

this particular plot the big one that you see here. So, this basically frequency the difference 

Δ𝜔 again the normalized one versus the wave vector which is also normalized one. 

 

 

 

 



 
 So, this is how you know the fundamental mode varies and this is how the higher order 

guided modes varies with  know your different wave vectors. So, the projected band 

diagram here consists of two parts okay.  

 

So, this is the band diagram that consists of basically two parts one is the continuum of 

frequencies that is basically the light cone okay. So, that represents all the possible extended 

modes or extended states within the cladding. And after that it tells you about a discrete set 

of guided bands with frequencies below this particular light cone. 

Now if the cladding material were uniform say it had a dielectric constant of 𝜀 and that is 

also independent of 𝜔 . In that case the light line you could have drawn the you know lower 



boundary of this light cone as 𝜔 = 𝑐𝑘z/n or you can write 𝜀. So, this entire thing is giving you 

the light cone and this line which is basically the lower boundary of the light cone is given 

by this straight line 𝜔 = 𝑐𝑘z/√𝜀.  

 

 

But now we do not have that uniform line. or homogeneous material in the cladding. 

 

Instead of that what do you have? You have a non-uniform cladding such as you know a 

lattice of holes that in that case the light line is also not straight. So, instead it will be given 

by fundamental you know space filling mode of the cladding which is basically the lowest 

frequency extended mode of the cladding at each kz. So, this is the one for this case. So, in 

this structure however the guided mode is basically so close as you can see here. So, it does 

not follow this light line which is for the uniform rather for this case you basically have the 

line which is very close to the light line. 

 

 And usually because of this closeness it is more convenient to plot the difference that is Δ𝜔  

which is 𝜔lc − 𝜔 that is the difference between the light line and the guided band you know 

rather than plotting the frequency itself. So, this is basically this that exists Δ𝜔 versus the 

wave vector. And we you define this Δ𝜔 in such a way that it is positive for the index-guided 

mode. So, you can see here for any k value the light line has got higher frequency. So, better 

you do it like you know 𝜔lc − 𝜔 other than doing the you know reverse of it. 

 

 

 



 

 

So, you make sure that that Δ𝜔 is basically positive. So for each kz let us now find all the 

extended modes of the infinite periodic cladding okay that means without any core okay for 

all possible transverse wave vectors that is kx and ky. And then you will be plotting the 

resulting frequencies as function of kz okay and again the lowest frequency for each kz will 

basically define the light line that is basically the lower boundary of the light cone. Now this 

extended modes can be analyzed by considering the periodic cladding by itself okay and one 

need to consider only kx, ky in the irreducible Brillouin zone of a triangular lattice okay. And 

the extended modes take the block form of a plane wave that is 𝑒(𝑖𝐤.𝐫) okay and it has to be 

multiplied by the periodic envelope function that is 𝑯𝒌 (x,y) okay.  

 

 

 

 

 

 

 

 

 



 

So, H is the magnetic field and we have discussed why dealing with magnetic field is easier 

than dealing with the electric fields right. But if you have information about one you can 

always find out the other one. So the increased permittivity of the core introduces one or 

more guided modes by pulling down modes below or beneath the light line okay. And 

because they are below the light line that means you know this modes must decay 

exponentially into the cladding. 

 

 And further below the light line they are pulled the faster the decay will be right make 

sense. And for the case of a holey fiber okay you can see a doubly degenerate band is 

localized in the core. So, you can have either the you know polarization along x or y okay. So, 

you can see Ex or Ey like this. So, it can actually support a doubly degenerate band which is 

localized in the core and this is how the field pattern will look like. 

 

  

 

 

 



 

So, this one we call as fundamental mode because you know it is like a circular kind of 

pattern of the same you know electric positive electric charges. So, what we can see here is 

that electric field polarization are nearly orthogonal everywhere and here you can see that 

the left one is mostly this mode is purely Ex and on the right side here you can see this 

mostly Ey okay and the green circles over here they actually show the location of the air 

holes in this triangular lattice. 

So, what you see here that in general the fundamental mode is defined as the mode with the 

largest you know kz for a given 𝜔 or you can say they have the smallest you know 𝜔 for the 

given kz. So, it means it will have the lowest or smallest largest kz will mean you will have 

smallest wavelength associated. So, that will be the fundamental mode. 

 

 So this is analog to of the two degenerate orthogonal linearly polarized LP01 mode that 

typically propagates within a you know standard single mode silica fiber. In this case due to 

large index contrast and 6-fold symmetry the two orthogonal modes are neither purely 

linearly polarized nor they are exactly related by a 90 degree rotation. 

 

 

 

 

 

 



 

 So, here also you can see from the figure that for the larger values of kz three additional 

guided bands are basically localized here you can see. okay. So, the here you can basically 

see that the 3 different values are overlapping and where do they come from they actually 

start appearing below the light line okay at 𝑘z𝑎/2𝜋 equals 2. 

 

 So, from here they start appearing okay and you can see that one of this band okay is 

doubly degenerate. So this is the fundamental mode. So why it is called doubly degenerate 

because for the same frequency you can actually have two different orientation or two 

different modes possible okay. So this modes are doubly degenerate and is essentially a 

higher order version of the fundamental mode here you will see okay. Here also you can see 

doubly degenerate okay. for certain frequency band okay and with an extra nodal plane 

perpendicular to the direction of propagation right. 

 

 However, the other two bands are basically non degenerate. So, none of these higher order 

modes can be excited by a plane wave incident in the z direction because the source and the 

modes would have different symmetries.  

 

 

 

 

 

 



 

So, with the understanding of the basic modes which are excited in the holey fiber we can 

now see how this fiber can act as endlessly single mode fiber ok. So, in an ordinary index 

guided waveguide  as one goes to higher and higher 𝜔 that means smaller and smaller 𝜆 you 

will see that more and more number of guided modes are basically pulled down below the 

light line. So, this is your light line and these are the extended modes ok. 

 

 

 



 
 

 So, you will see more number of you know  with higher 𝜔 or smaller 𝜆 you will see more 

number of guided modes are pulled below the light line that is true. And eventually one 

approaches the ray optics limit where you know the guided modes are described by 

continuum of angles which are basically greater than the critical angle of the total internal 

reflection. So, you can actually consider those as you know the modes propagating. 

However, at as first pointed out by Birks et al. in 1997 okay this need not be true of the 

photonic crystal fibers right. 

 

 So, this particular plot shows the frequencies for a plane of glass of thickness a okay and 

that has been normalized okay and permittivity to be 11.4 okay. Now, photonic crystal 

fibers can remain endlessly single mode regardless of the wavelength. So, that means it is 

only limited by the material properties and we will see how it is possible. So, we also saw 

that you know the holey fiber that we considered could guide up to 4 bands ok. 

 So, fundamental guided mode and then there could be like 3 higher order guided modes. So, 

it is not definitely endlessly single mode there are possibility of other modes as well. 

However, it will still display the essential feature of this phenomena that is single endlessly 

single mode because as one go goes to higher and higher k_z or you can say larger 𝜔 you do 

not get more and more bands. It means the number of bands typically never exceed 4. so 

you can actually think of you know that you know one could reduce the number of modes to 

just one okay by having the you know whole radius to 0.15a however it will weaken the 

strength of confinement.  



 

It means if you if you go below this one you will never excite this modes okay and you will 

be only dealing with the single mode case. So, only one compromise will be there it will 

weaken the strength of the confinement. Now the question comes why are the higher order 

modes absent? The reason is that the effective index contrast between the core and the 

cladding in the case of holey fiber decreases at small wavelengths rather than remaining 

fixed as it would have been the case for any homogeneous cladding. Because of that, the 

strength of confinement becomes weaker for smaller wavelengths. 

 

 And higher-order guided modes remain above the lowered light line. And to be more 

concrete, you can define the effective index of a mode as (𝑐𝑘z)/𝜔. So the factor by which the 

phase velocity 𝜔/kz decreases is this one ok. So, typically the phase velocity would have 

been c, but now it decreases by this particular factor to give you the new phase velocity ok. 

And this effective index equals the ordinary refractive index for plane wave in a 

homogeneous medium. 

 



 
 

 So, with this understanding you can say that at a given 𝜔 or frequency an index guided 

mode will obviously have you know larger effective index than that of the light line. So to 

decrease the you know to show the decrease in this effective index contrast with 

wavelength you can consider this particular figure okay which plots the effective index 

(𝑐𝑘z)/𝜔 versus the vacuum wavelength which is 𝜆/𝑎 or you can say it is 2𝜋𝑐/𝜔𝑎. right. So, 

what do you what do you see here? So, this is basically based on the band diagram which is 

given here right. So, here you can see the light line ok and these are some of the modes. 

 

 So, in the in the limit of small 𝜆 that is here  effective indices of both modes okay and the 

light line you can see both are basically approaching that of the bulk silica that is 1.45 only 

when you are going for larger wavelength you will see there is a deviation okay. from the 

guided modes and the light line right.  

 

 

 

 

 

 

 

 



 

So, it means there is an intuitive explanation for why the effective index contrast would 

decrease with wavelength right. 

 So, here also it again merges. So, the fundamental that is the light line mode of the cladding 

wants to be concentrated as much as possible in the high dielectric region right. So, if you 

consider 𝜆≫𝑎  to be much much larger than 1 that is you know your 𝜆 the periodicity is 

much much or 𝜆 the wavelength is much much larger than 𝑎. That means what it will look 

like the periodic media will look more or less like a homogeneous medium in that you know 

light cannot entirely lie within the high dielectric ok because the field cannot vary faster 

than the wavelength.  

 

 

 

 

 

 

 

 

 

 



 

So, in that case what will happen as we go to shorter and shorter 𝜆 more of the light will be 

able to fit in the dielectric between the holes. So, when you consider the limit of 𝜆 much 

much smaller than 𝑎 that is the case when your ray optics limit will be applied and light can 

be simply guided by total internal refraction and it remains entirely within the dielectric 

material. 

 

 
 And in that case the effective index will be approaching the index of the dielectric material 

itself that is 1.45. Now, since the core is also made up of the same dielectric material. the 

effective index of the guided mode must always approach the same value as the wavelength 



decreases that is what we see here. So, precisely these are the limits seen in the figure 

where both the light line and guided mode approach the index which is 1.45 that with that 

of the bulk silica in this particular case. So, here the value of the effective mode is basically 

1.29 and this is the case when your 𝜆/𝑎 is like 10 which is much much less larger than 1. 

 

 

 

However, as you can see that this explanation is not complete because if you take an 

example  and think could the effective index contrast decrease so fast that the modes 

become less and less confined to the core for small 𝜆 or perhaps the effective index contrast 

does not decrease fast enough to asymptotically exclude the higher order modes. So, which 

is the case? But I actually you know neither of these is basically the case that is happening. 

 

 Because when you consider the limit of kz going to infinity. we obtain a finite number of 

modes with fixed field patterns okay.  

 

 

 

 

 

 



 

And of course in a real material we must eventually take into account the fact that you know 

𝜀 is basically a function of frequency then it is never fixed okay and the material may cease 

to be transparent to some frequency means it may become lossy as well. And on the other 

hand we can equivalently keep 𝜔 fixed and try to rescale the structure in that case the above 

analysis is exact you can apply that particular analysis there. So, the endlessly single mode 

property in this case means that we can make the waveguide arbitrarily large and still guide 

a single or actually a doubly degenerate waveguide mode through it. 

 

 So, this could be useful for reducing the effects of material non-linearities although this is 

eventually limited by the fact that the bending loss tend to increase with the increase in the 

mode size right.  

 

 

 

 

 

 

 

 

 



 

 

Let us now discuss the scalar limit and linear polarized modes in the case of this photonic 

crystal fiber. The key to a quantitative understanding of the large kz limit is to realize that 

this particular regime is asymptotically described by a scalar wave equation which is 

independent of kz. Consequently for a large kz the modes approach kz independent ok, 

linearly polarized field patterns. Indeed we shall see that you know this scalar limit is useful 

for understanding other fiber phenomena as well such as the existence of photonic band 

gaps. Traditionally the scalar approximation in electromagnetism is formulated only for 

structures with the small dielectric contrast.  



 

 

So the dielectric function for such a medium can be described as a sum of a constant epsilon 

c and a small perturbation which is 𝛿𝜀(𝑥, 𝑦) which is much smaller than the 𝜀c. Now in that 

case if we neglect terms which are of the order of delta you know |𝛻𝛿𝜀| then the Maxwell's 

equation for the electric field can be written as this okay. So, this is the typical form that we 

have already seen before okay. So, in this approximation the different components of 

electric field are decoupled from one another although they are not completely independent 

because of the transversality constant which is basically 𝛻 · 𝜀𝐄 equals 0 okay. 

 

 So, this constraint allows Ez to be determined from Ex and Ey for example, okay.  

 

 

 

 

 

 

 

 

 



 

And if we consider this results with Bloch's theorem for the waveguide modes, it follows 

that we can write the transverse xy components of the electric field vector E in terms of 

scalar function 𝜓(𝑥, 𝑦)  which describes an LP mode in this particular form that 𝐸t=[𝑝𝑥 𝑥+𝑝𝑦 

�̂�] (𝜓(𝑥, 𝑦)) (𝑒 ^(𝑖𝑘𝑧 𝑧)). So, here px and py are basically constants that specify the amplitude and 

the direction of polarization and the subscript t stands for transverse. So we can understand 

that this particular function 𝜓 basically satisfies the eigen equation. So if you put it there 

you can see that some operator operating on 𝜓 gives you back the 𝜓 and some constant. 

 

 So this is an eigen equation or eigen mode equation and this is reminiscent of the 

Schrodinger's equation of the quantum mechanics.  

 

 

 

 

 

 

 

 

 



 

So, in this equation if you see that this 𝛻t okay represents the x and y components of the 𝛻 

operator or you can say 𝛻t okay. So, or nabla whatever you want to call it and here you can 

also see k_t that is basically the transverse wave number okay and it is defined as square 

root of (𝜔2/𝑐2 ) 𝜀𝑐−𝑘z2. So, these are this is the basically the transverse component of the 

wave factor right. So, in contrast to this traditional approach a photonic crystal fiber 

generally has a large index contrast and for this reason it may be surprising that a photonic 

crystal fiber can be accurately described by a scalar approximation. 

 

 

 

 

 

 

 

 

 

 

 



 
 

 So, how does it work? Suppose that in addition to the small variation which you consider to 

be 𝛿𝜀, we also have some low some very low index region something like air holes with 

dielectric constant given by you know 𝜀 which is 𝜀𝑐  − Δ𝜀. So, in this case you know because 

this has got a very low index it means this 𝛿𝜀 is basically large and positive okay. And the 

key fact is that for large kz the fields within this low index regions will also become very 

small it means index guiding is happening right. So we may therefore use scalar 

approximation in the region where I know this Δ𝜀 equals 0 okay and simply said 𝜓 equals 0 

where Δ𝜀 is not equals 0. 

 

 for the equation this one right. So, these are the two regions we can understand.  

 

 

 

 

 

 

 

 

 



 

 

So, where it is positive you actually have this particular wave being guided right and where 

the difference is not there you can simply put that you know the field is also 0 that means no 

wave guiding taking place. So seen in this particular way the effect of air holes is basically to 

impose the boundary condition on 𝜓. That makes sense if you go back to the first cross-

sectional schematic we have shown those are the air holes giving you the boundary 

between the solid core and the you know the cladding  okay and that is where you know 

you can think of high and low index medium and light is basically getting guided based on 

modified total internal reflections. So, to be more explicit the fields fall off exponentially into 

the low index region with a special decay constant of 𝜅 which is given as square root of 

(𝑘z2−𝜔2/𝑐2)  𝜀. 

 

 And in terms of 𝑘t you can write 𝜅 as this okay. So, you can actually find out what is the 

decay constant for the field to fall inside this low index region that is the air region. The field 

in this region can therefore be neglected when 𝜅 is of the order of kz and which are much 

much larger than kt. That means the field decays much faster than the transverse 𝜓 

oscillations okay. However, the condition kz much greater than kt is equivalent to the 

condition that the effective index of the mode that is 𝑐𝑘z/𝜔 approaches the material index 

that is √(𝜀𝑐 ) and that we have already seen that it is true for large frequencies right. which 

also correspond to large kz.  

 

 

 



 

So, why is it important? The scalar limit for large kz has several interesting consequences. 

The first one is that if 𝛿𝜀 is 0 as it is for our holy fiber then 𝜓 basically satisfies an eigen 

equation and it can be written as −𝛻t2 𝜓 = 𝑘t2 𝜓 and with 𝜓 equals 0 in the holes okay. So in 

this equation okay neither kz nor 𝜔 appear explicitly right. So, thus the values of neither kz 

nor 𝜔 is going to affect the solution of 𝜓 that you can get from here or the eigenvalue kt2. 

that you are going to obtain from this equation. So, what we can conclude? We can conclude 

that  for large kz the modes basically approach fixed field pattern obeying a dispersion 

relation which is basically this one 𝜔2=𝑐2 (𝑘𝑡2+𝑘𝑧2)/𝜀𝑐. 

 

 

 

 

 

 

 

 

 

 

 



 
 The second point is that you know each mode 𝜓 in the scalar limit which is also the so 

called LP mode right it corresponds to a several vectorial solutions of the Maxwell's 

equation. for the same 𝜓2 intensity pattern and the same value kt, right. So, there are 

basically two possibilities. If 𝜓 is a non-degenerate mode then we get two vectorial modes 

something like 𝜓 𝑥 and 𝜓�̂� which corresponds to doubly degenerate linearly polarized 

modes as we saw in that you know diagram electric field diagram before. And now, if 𝜓 

itself is a doubly degenerate state with two solutions, which is like 𝜓1 and 𝜓2, in that case, 

we get four vectorial modes, okay, like 𝜓1 𝑥  or you can say 𝜓l𝑥  and 𝜓l�̂�  for l equals 1 and 2. 

 

 So, l is missing here it should be l equals 1 and 2 right. So, for finite kz the scalar 

approximation is not exact and such degeneracies will break that means you know leaving 

at most doubly degenerate pairs.  

So, the states basically divide into linear combinations corresponding to different vectorial 

eigenmodes. It is precisely such LP modes which are nothing but a pair of doubly 

degenerate modes which corresponds to a non-degenerate or you can say monopole like 𝜓 

and for nearly you know  degenerate modes which includes one doubly degenerate. pair 

corresponding to a doubly degenerate that is like you know dipole like 𝜓. 

 

 

 

 

 



 

And the third case would have been that we can now predict whether the kz tends to infinity 

limit is going to yield a finite or an infinite number of guided modes. 

 

 Again if we suppose that you know 𝛿𝜀 is 0 for simplicity. So we can write that in the low 

index region that is 𝛿𝜀 region which completely surrounds the core. Then in the scalar limit 

the field will behave like the familiar quantum problem of particle in a box with infinite 

potential barriers. So, here the box supports you know arbitrarily many modes which are 

limited only by the approximation that your kt must be much much lesser than kz right. So, 

on the other hand for a connected structure okay like the one we have when the eigenvalues 

kt are large. the scalar field 𝜓 will be able to leak out between the holes because there is still 

material and that can act as leakage between the holes and the modes are not guided. 

 

 So, mathematically this situation is identical to a two-dimensional photonic crystal of 

perfect metal rods okay where 𝜓 can be or where epsilon can be considered as minus 

infinity. So, these are like perfectly metal rods and for the case of TM polarization right. So, 

there kt square corresponds to the 2D frequency eigenvalues that is 𝜔2/𝑐2 and 𝜓 will 

correspond to 2D. Ez, okay. 

 

 

 

 

 



 

 

 So, the band diagram for this analogous 2D metallic structure which is like this. 

 

 So, these are like metal with perfect metal, but they are forming an array right now. So, it is 

a triangular array of metallic rods. So, you can see this will be the Brillouin zone, okay. and 

the band structure is shown here for this analogous 2D metallic structure. So, it exhibits a 

well-known property of metallo-dialectic photonic crystal where there is a band gap 

starting at k_t equals 0 and  extending so this is one band gap that you can see okay. 

 

 And this is also another band gap which starts from kt because this is kt okay and you can 

yeah. So, here the frequency 𝜔𝑎/2𝜋𝑐 is of the order of kt okay. So, it starts or you can say it 

is equivalent to kt here. So, it starts from kt equals 0 and extending to the minimum of the 

first band. So, this much is the band gap for this metallo dielectric photonic crystal right. 

 

 So, this finite gap in turn corresponds to a finite number of discrete kt localized modes 

which are supported by a defect okay. So, another important feature that you can see in this 

particular figure is that you know in this scalar metallic limit. There are also ordinary 

photonic band gaps that appear here between the higher bands of the structure. So, the two 

band gaps which are shown in this shaded yellow. So, this one the lower lowest band has a 

low cutoff frequency characteristic of the metallic structure and these bands are equivalent 

to the modes of the holey fiber in the scalar limit that is basically the limit where kz is very 

large okay. 

 

 



 
 

 So with that we will stop here and we will start the discussion of in detail analysis of band 

structure or band gap guidance in holey fiber in the next lecture. So if you have got any 

queries regarding this lecture you can drop an email to this particular email address 

mentioning MOOC and photonic crystal on the subject line. Thank you. 


