
Lec 27: Band-gap guidance in Holey Fibers 

 
 

 Hello students, welcome to lecture 27 of the online course on Photonic Crystals 

Fundamentals and Applications. Today's lecture will be on Bandgap Guidance in Holey 

Fibre.  

 

 

 

 

 

 

 

 

 

 

 

 



 

So here is the lecture outline. We will first discuss about the mystery about the light 

guidance in holey fibers and then we will discuss about the origin of band gap in holey 

fibers. We will take examples of metal cylinders and then you know compare to that with air 

hole arrays okay. And we will also then discuss the guided modes in a hollow core. 

 

 discuss about the surface states and go into the details of the mode profiles.  

 

 

 

 

 

 

 

 

 

 

 

 



 

So, index guiding that we know that it can be relied upon you know how to confine light 

within the regions of higher index ok that is how index guiding takes place. So, index guiding 

is typically done based on the principle of modified total internal reflection right. So, in 

contrast to that when you have a photonic band gap. 

 

 as a principle for light guiding. There you have to think of you know that this band gap can 

localize light in a waveguide. which has a lower index such as a hollow core so it's a very 

different concept altogether than the traditional concepts used for light guiding in optical 

fibers or even you know index guiding fibers so here's an example or figure you can say for 

the two-dimensional periodic structure which is in the form of a triangular lattice of air 

holes so this is called a holey fiber and this is a which is the period of the holes. So this can 

be used for confining light into this hollow core using the principle of bandgap. So of course, 

a fiber cannot have a complete bandgap because of its continuous translational symmetry in 

the z dimension. 

 

 So you can think this is x and y, and you can think of z going into the plane of the screen. So, 

the fibers are continuously you know they are infinitely long you can think of that. So, you 

actually have continuous translational symmetry along the z direction and you know. So, a 

complete band gap may not be possible for this kind of structure, but because of this 

translational symmetry the wave factor kz is conserved. And it is therefore still useful to 

have a bandgap over some finite range of kz. 

 

 So that way, this photonic crystal fibers with two-dimensional periodic structures are really 

useful. But how might such a gap arise in case of a silica holy fiber as compared such as 

those we have seen in the previous sections or previous lectures? And how can we use it? to 

confine light in air?  



 

 

 

So these are a couple of interesting questions or mysteries that is there in the case of holey 

fibers where you are using a air hole as your core to guide light. So to understand that, let us 

look into the origin of the band gap in holey fibers. So let us begin by considering the 

periodic cladding by itself without any core. So, you do not have a core you just consider 

completely you know filled periodic cladding. 

 

 You can also think of a uniform air hole at the center to just you know think of the cladding 



okay. So, at any value kz okay the solutions are usual block modes comprising a band 

structure in a two-dimensional Brillouin zone. what is important here we need to find the 

range of kz for which the band structure gives us you know a band gap that is a gap between 

the two bands isn't it okay and the previously discussed two-dimensional gaps of any use 

here that we have done for two-dimensional slabs? The answer is unfortunately no, because 

in the earlier cases of these two-dimensional gaps, they all correspond to kz equals 0, but 

this is an infinitely long structure, okay? So you cannot actually have kz equals 0. Rather, you 

need to find gaps that exist for a range of non-zero kz, and then only it will be useful  for this 

kind of waveguide, okay.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

So, if the crystal has a complete band gap that is you know overlapping TE and TM gaps at kz 

equals 0, then indeed there will be a range of values of kz equals 0 over which you know the 

gap will persist. 

 

 But you know the silica air dielectric contrast which is typically 2 is to 2.1 is to 1 okay it is 

typically not sufficient to obtain such a complete two-dimensional band gap okay at least 

not for this kind of simple periodic geometries. So, if you take this as an example, here you 

have silica air structure and this can have a TE gap but not an overlapping TM gap. For case 

that not equals 0 case, you will see that the gap basically disappear because the TE gap and 

TM gap do not overlap. With different materials, a complete band gap is possible at kz equals 

0, something like, you know, something like chalcogenide glasses, which have indices of 2.7 

or higher.  

 

 

 

 

 

 

 

 



 

So instead of silica, you've got to use this kind of glasses for which complete band gap can be 

possible for this kind of, you know, like glass-air kind of structure. So, what other 

alternative do we have to find a gap in a holey fiber? So, since kz equals 0 was not useful in 

this case, let us consider the other extreme that is you know kz tends to infinity. And in this 

limit, the system is again equivalent to a two-dimensional system  OK, so here the holes will 

now get replaced by perfect metal rods and only an analog of the TM polarization will be 

present in this case, right. So this is the band diagram over a Brillouin zone or irreducible 

Brillouin zone for a triangular array of metallic cylinders positioned like this. This is the 

normalized frequency and this is the vectorial band diagram because it shows different 

direction okay and you can see that the band gaps are basically shaded in yellow. So, the 

lowest band here has a low frequency cutoff okay like this which is characteristic of the 

metallic structures. and there is another band as well between the second and the third 

band. So, there is another band gap here okay and this bands are equivalent to the modes of 

the holey fiber in the scalar limit for large kz okay. 

 

  

 

 

 

 

 

 



 

So, that is why we are  taking this particular structure to understand ok. So, as you can see 

here that the structure indeed have a gap between two bands. So, the metallic rod here has a 

radius 𝑟 = 0.3𝑎 ok and  that has given us this gap between the second and the third band. 

And this is basically a cutoff frequency concept which comes from the metal. 

 

 Now, this band gap that you have seen between the second and the third band will appear 

not only for silica air structure,  but you can also get this appear make this appear for any 

index contrast with the same geometry as long as you go to a large enough kz value.  

 

 

 

 

 

 

 

 

 

 

 



 

 

So, in this case the first two bands in the scalar limit would correspond to four vectorial 

modes which we will see later okay and so we can expect  to see a gap open between the 

fourth and the fifth bands as well okay which are not shown here but then this will be if 

each of these are having two modes okay in that case there will be fourth and here will be 

fifth so you will actually see a gap between the fourth and the fifth bands for sufficiently 

large kz values. We will come to that. So let us look into the origin of bandgaps for air hole 

structures now. So when guiding in an air core, it is important that the gap open up when kz 

is not too large. 

 



 in order for that gap to extend above the, you know, light line of air that is given by 𝜔 = 𝑐𝑘, 

okay? Or you can write 𝜔 = 𝑐𝑘z. So, therefore, we increase the strength of the gap by 

enlarging the holes to r equals 0.47a. So, what it was previously? It was like this, okay? So, 

increased it and then this is what we get okay the resulting projected band diagram is 

shown here in this particular figure right where we plot all the modes of the periodic 

cladding. So, this is the cladding without any core okay and this is plotted the normalized 

frequency is plotted as a function of the normalized wave vector kz. 

 

 So here you can see we plot from 0 to 3. Here also it goes from 0 to 3. And in this case the 

period is a and the whole radius is 0.47a. And the material is taken as 2.1. So, here you can 

see that this forms the light cone of the crystal. So, you can also call it photonic crystal light 

cone. And the lower boundary is marked by this particular red line as it is done also for the 

uniform medium. But there is something interesting here. Something like this, you know, 

there are some dashed regions highlighted which show some opening. 

 

 above the lowermost boundary. So you see there is a white region above this particular 

line. So there is a photonic band gap here above the light line.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

So you can actually see this better in this particular diagram. So what is happening here? 

This is the vectorial band diagram for the same case where the radius of the air holes taken 

as 0.47 a and this is the holy fiber and what we are doing here this is plotted for a particular 

value of kz. So, here you can see that at 𝑘z 𝑎/2𝜋 = 1.7 this is the case ok, you actually have 

this opening. So, you plot this particular vectorial diagram at this particular value of kz ok. 

So, what you see here? You actually see band gap. 

 

 

 

 

 

 

 

 

 

 

 

 



 
 So, the band gaps are shaded in yellow  So once again, the lower gap is basically coming 

from the index guided region. So for this kind of structure also, you have a lower gap. So 

once again, it comes from the index guiding region. And the upper gap, this one, 

corresponds to one of the band gap inside the light cone where guiding in air core is 

possible. And this is because of this phenomena. 

 

 So it is a band gap inside the light cone. And that is why guiding of light in this air core will 

be possible. So this gap, since this gap comes from the scalar limit, it remains open. And 

indeed, it increases monotonically  as kz is increased. So here you can see that particular 

feature that this gap actually increases monotonically with kz. 

 

 

 

 

 

 

 

 

 

 



 
 So this is basically the band diagram for or you can say this is the 𝜔-k relationship or 

dispersion relationship for the triangular lattice of air holes. And this is particularly the 

vectorial  band diagram at a particular value of k and this is mainly showing you the 

different directions fine. So, what we understand from here is that you know this forms of 

the light cone of the holy fiber with gaps appearing inside that as this open regions and for 

larger case that you can see that higher order gaps are also appearing in the scalar limit. So, 

what is this red line? This red line basically shows you the light line of air and that is 

marked as 𝜔 equals ckz and this dashed boxes basically indicate those defect modes which 

we are trying to excite for light propagation inside the holey core fiber. So there are two 

interesting gap properties that can be understood from the scalar limit. 

 

 . 

 

 

 

 

 



 
 The first is that two-dimensional bandgaps open only for some minimum index contrast, 

which is around 1.4:1 for this kind of assembly, like triangular lattice of circular holes. And 

that is not true for the fibers because fibers have  slightly different comment as we 

discussed earlier.  

 

 

 

 

 

 

 

 

 

 

 

 

 



 

And the band structure approaches a scalar limit of the metallic rods with same gaps and for 

any index contrast and no matter how small  okay although a small index contrast for a 

small index contrast a gap may open for very large kz value which is far below the air light 

line okay. So, so this is basically the situation that you can expect at very large kz values 

right that is why we are like referring to this case one limit case all the time. 

 

 

 

 

 

 

 

 

 

 

 

 



 

okay and the second important point. So, there are two important gap properties as I 

mentioned first one is shown here the second one is this that consider what happens for the 

inverse case of higher index rods which are you know surrounded by lower index material. 

So, for that case you know in the  scalar limit one obtains you know the light modes will be 

100 percent confined inside the rods itself yielding the bands which are independent of the 

in plane block wave vector that is kx and ky. And the bandwidth of the lowest photonic 

bands become very narrow in that case approaching a discrete set of bands corresponding 

to the scalar modes of cylindrical metal cavities. So that will be like inverse of this particular 

structure where you have cylindrical metal cavities. In between these bands are the gaps 

but here the gaps will be largely insensitive to the position of the rods. Since in the you 

know scalar limit the rods will form non interacting cavities whose frequencies are basically 

determined by the rod geometry alone right. So, the bandgap guidance has been observed 

experimentally to be very low like you know for the index contrast as low as 1 percent in 

such cases ok. And the localization of modes via this sort of phenomena has been dubbed as 

anti resonant reflecting optical waveguiding.  

 

 

 

 

 

 



 

 

So, these are two important phenomena that can happen in the fibers, holey fibers and we 

will see how the guided modes look like now in a hollow core. So, by now we are familiar 

with the fact that you know given a band gap if you are able to introduce a defect in the 

crystal you can produce localized states. 

 

 And this phenomena is basically exploited to guide light inside a hollow core photonic 

crystal fiber. So, this particular figure shows the cross section of an experimental holey 

silica fiber. So, you can see it is a hole array that is in the cladding and at the center 7 holes 

are basically merged to form a large gap. So, this is how experimentally this fiber has been 



made. okay and this is the image from an electron microscope and the the black region here 

shows you the air holes and this is basically silica glass okay and this is a zoomed in version  

for you guys to clearly see it and you can see that you know this black portions are basically 

air holes okay and this this core basically works like a central air defect because it is 

replacing seven holes okay and it can support gap guided modes at wavelength of 1060 

nanometer okay. 

 

 
 So, that is particular to this dimension if you change the dimension you will have a different 

band gap and you will be able to guide the wavelength of your choice. So, when you try to 

replicate this in simulation, what you can do? You can consider a single hole whose radius is 

basically enlarged from say 0.7a to 1.202a. and you will get something like that. So if you do 

that, so what is here? a is 33.2 microns okay and if you do 1.202a you will be able to get 

radius almost equal to this one. So, that is how you can actually simulate this particular 

structure in this fashion and why we are showing this because our focus will be to have 

something you know within this gap  okay that was shown in the in this particular figure. 

So, we want our modes to be somewhere here okay and when you do the actual simulation 

with this then this is the structure that you are actually simulating. 

 

 

 

 

 

 



 
 So, what you have done we have taken the central hole and set its radius to 1.20 to a and 

you came up with this kind of structure  right and then when you computed the band 

diagram  so this is how the band diagram looks like and you can see that there are some 

kind of you know interesting features over here so why i have shown this on this side here 

you can see that this is the experimental structure and we are basically trying to see what 

happens here. So, this is kind of a zoomed version ok. So, as you can see here it starts from 0 

to 3 the normalized frequency whereas you are here only showing from 1.4 to 2 and you are 

also doing it for 1.3 to 2 that means you are somewhere here 1.3 to 2. So, more or less you 

are basically doing this box. So, we have zoomed into and studied this box for this particular 

geometry and this is what we observe right. Now, here we can categorize this modes the 

guided modes that you see in two ways by symmetry and by whether they are surface states 

or they are air core modes. 

 

 So, there are two ways of categorizing them. And the lines in different colors correspond to 

different symmetries. As you can see here, there are, you know, different color lines.  

 

 

 

 

 

 

 



 

We'll go into the details. So, the three thick red lines here indicate doubly degenerate bands 

that have the correct symmetry to couple to plane wave input light. And there are also some 

thin green lines which indicate doubly degenerate bands with different symmetry and the 

thin blue lines indicate non-degenerate bands. 

 

 And the bands below this light line that is the thick black line here are basically the surface 

states. So, they will be basically confined to the edge of the core.  

 

 

 

 

 

 

 

 

 

 

 



 

We will see that here through some simulation. So we will now focus on these three dots 

that you see. They basically indicate modes for this particular photonic crystal holey fiber. 

 

 this particular black line is the light line in air. So, that is 𝜔 = 𝑐𝑘z ok. So, when you do 

simulations and you first focus on this particular one. So, what we are plotting here is 

basically the intensity pattern ok that is  real of E conjugate cross H that is basically giving 

you the pointing vector ok and the direction. So, you actually get you know intensity of this 

3 doubly degenerate modes of this particular hollow core fibre. right so these are basically 

corresponding these three figures correspond to this three dots that you see okay and the 

normalized frequencies are marked here so you see the first one it is 𝜔a/2𝜋c equals 1.63 so 

this is this one the below one okay okay and the one on the top is 𝜔a/2𝜋c equals 1.66 and 

the one here has got the highest frequency that is 1.68 ok. So, they have also shown this. So, 

this these two are for the same kz value where the normalized kz or you can say 𝑘z𝑎/2𝜋 is 

1.6 and for this case it is 1.7.  

 

 

 

 

 

 

 



 

So, the dark one means 0 intensity and the bright ones or white ones means the maximum 

intensity. So, what you see from this kind of plot? So, you can actually see that this A and B 

points are lying above the airline ok. So, they can give rise to some air core modes, but 

however this one, this particular dot, this is lying below the light line. So, this will give you a 

surface state and that you can also see from here. And that is what the intensity patterns 

also reveals a very important and striking difference between the two bands, which lie 

above the light line and the one below the light line. 

 

 So this one is below the light line. So here you can see in these two case, the intensity is 

mainly concentrated in the air core. Whereas, in this particular case, the intensity is mostly 

concentrated around the surface of the air core. That is an example of surface state.  

So, where they work, they actually appear below the light line. ok and it is evanescent in the 

crystal because it is within the band gap ok and it is also evanescent in air core because it 

lies below the light line. 

 

 If so if it was above the light line so it would have been you know a propagating mode or 

supported mode. 

 

 

 

 

 



 

So, you know if you look carefully we can figure out that there are four surface states of 

various symmetries below the light line. So, from this you can think of four different 

symmetric positions of the surface state and why so many? So, to understand this let us 

compare this case. with the surface states of a 2 dimensional crystal. In 2 dimensionals in 2 

dimensions we considered only kz equals 0 and then we found out a continuous band of 

surface states that propagated along a flat interface isn't it. 

 

 

 

 

 

 

 

 

 

 

 

 



 
 So, here we have a curved infinite interface. So, instead of a continuous set of surface states 

we will have you know discrete set of surface states here at each okay at each kz which will 

form continuous bands as we vary this kz. And this happens in much the same way that a 

finite piano string supports only discrete set of harmonics. So if we were to make the core 

larger and the interface longer, then we would get more surface states, which are more 

closely spaced. Makes sense. However, we must also take into account the crucial role of the 

crystal termination. 

 

 So, here we considered the crystal to be infinite along the x and y, but in practice that will 

also be terminated somewhere. So, the existence of surface states depend on how we 

terminate the crystal. For example does the edge of the air core occurs at the edge of the 

holes or you know so it's like this or do we cut them in half. okay how it is happening so this 

is like where you do not have a perfect circular air core because you are basically having the 

air holes complete and then you are curving this out isn't it so it should be possible to 

improve the performance of the fiber by adjusting the termination and that would eliminate 

you know the surface states So, the surface states has got a lot to do the way it is being 

terminated and the surface modes degrade a fibers performance primarily because they 

may have greater loss than the guided modes. So, you can take for example, you know the 

scattering due to surface roughness is much worse for a mode concentrated at the surface. 

 

 than you know for a mode that is concentrated in the core that is guided through air. So, 

surface roughness is not going to affect that air core mode right. So, one could attempt to 

operate exclusively in the  air core mode of figure A that is this case ok. But you know what 

we plan may not happen all the time. So, sometimes it proves very difficult in practice to 

only work at this particular case ok. 

 



 

 
 So, any small in imperfection in making this photonic crystal fiber or any asymmetry  will 

tend to couple energy from one mode to another mode and especially at the points where 

the modes of different symmetry cross in the band diagram. So, that is where the coupling of 

the energy between one mode to another will be higher and then you will not be only able 

to excite the air core that you see in figure. So, you will have to you know live with the 

surface states as well. So, that is all for this lecture. So, we will be starting the discussion of 

the overview of Bragg fibers in the next lecture. 



 
 If you have any doubt regarding this concept okay or you can drop an email to this email 

address mentioning MOOC, Photonic crystal and lecture 27 on the subject line. so 


