
Lec 3: Fundamentals of EM theory of Light 

 

 

 

Hello students, welcome to lecture 3 of the online course on Photonic Crystals, 

Fundamentals and Applications. Today's lecture will be covering the fundamentals of 

electromagnetic theory of light. So, this lecture provides a detailed interaction of the 

electromagnetic theory of light  and we will see how the classical Maxwell's equations are 

valid for wave optics. So, here is the lecture outline, a brief overview of electromagnetic 

optics. We will discuss about divergence, curl and gradient operations. We will also discuss 

about Gauss theorem and Stokes theorems, then the constitutive relations which we will  



help us describe light matter interaction. 

 

 And then we'll go into Maxwell's equations and discuss all the four Maxwell's equations. So 

here is a photograph of James Clerk Maxwell. So he formulated a set of fundamental 

equations of enormous importance that bear his name. So with the use of Maxwell's 

equation, you can actually describe light as electromagnetic wave and we can actually see 

later on that this electromagnetic optics actually describes lot more physical phenomena 

than wave optics and ray optics. 

 

 
 So, electromagnetic optics so it is basically a vector theory comprising an electric field and a 

magnetic field that vary in time and space. So, in electromagnetic optics light is basically a 

mix of electric field and magnetic field. So, wave optics is basically an approximation to this 

electromagnetic optics that relies on the wave function. So, it is basically a scalar function of 

time and space ok. And when we talk about ray optics, it is basically the limit of wave optics 

when the wavelength is very short. 

 

 So, in short you can say that electromagnetic optics encompasses wave optics which in turn 

reduces to ray optics in the limit of short wavelengths. So, wave optics has a  far greater 

reach than ray optics. Remarkably, both approaches provide similar results for many simple 

optical phenomena involving paraxial waves,  such as focusing of light by lens and a 

behavior of light in gradient index media and periodic systems. but wave optics offers 

something that ray optics cannot. It is like the ability to explain phenomena such as 

interference and diffraction. 

 

 So, for explaining interference and diffraction you have to use wave optics, ray optics will 

not be sufficient there. However, wave optics is also unable to  quantitatively account for 



some simple observations in optics experiment, such as division of light at beam splitter. 

Now the refraction of light that is reflected and transmitted turns out to be dependent on 

the polarization of the incident light  which means the light must be treated as a you know 

vector rather than in the context of scalar theory and that is where electromagnetic optics 

enters the picture okay. So that is how you can see that electromagnetic optics can explain  

much more things than wave optics and ray optics alone. Now, in common with radio waves 

and X-rays light is also an electromagnetic phenomenon that is described by vector wave 

theory. 

 

 
 So, optical frequencies they basically occupy a band in this electromagnetic spectrum that 

extends from far infrared to visible to ultraviolet. So, this is basically the range of 

wavelengths. So, if you talk in terms of the range of optical wavelengths you can talk in 

terms of 10 nanometer to 300 micrometer. And in that vast range, you can see this is a very 

small region which is marked by 300 nanometer to 700 nanometer. That basically tells us 

about the visible range because we humans can see that only particular those frequency 

range or the wavelength range. 

 

 okay. So, electromagnetic radiation propagates in the form of two mutually coupled vector 

waves which are electric field wave and magnetic field wave. So, they are basically coupled 

to each other and that is how electromagnetic radiation propagates.  



 
Now, before proceeding to Maxwell's equation for electromagnetics, we need to go through 

some important operators used in vector calculus. And these operators used widely in the 

calculation of electromagnetic phenomena. And these are nothing but gradient, divergence 

and curl. So, gradient basically tells you about change in magnitude of a scalar field, 

divergence tells you about the source of vector field and curl tells you about the rotation of a 

vector field. So here you can actually see that these basic operations allow extracting 

information  about the distribution of electromagnetic field, energy associated with the field 

and electromagnetic radiation and so on. So here you can see that there is some positive 

charge here and there are more positive charges here. So, the gradient is in this particular 

direction. Similarly, it is more negative here and then it is less negative here. 

 

 So, the gradient is in this direction. So, if you take gradient of a scalar field, you actually see 

a vector. Now, this is divergence. So, if you take divergence of a vector field, you basically get 

a scalar. And if you take the curl of a vector field, you again get a vector. 

 

 So, we will get into this in more details in the next slides. So, the four Maxwell's equation 

that are useful for describing an electromagnetic wave are basically written in the vector 

calculus notation. That is why it is very important to understand these three basic operators 

of vector calculus that is gradient, curl and divergence.  



 

So, in the differential form of Maxwell's equation you will see that the equations are written 

in the form of vector differential operator nabla okay or it is also called as del okay. So, in 3D 

space the vectors can be split into orthogonal components and the partial derivatives can be 

calculated accordingly for each directional component. 

 

 And this nabla or del operator is basically a vector differential operator which can be 

written as this. So, this is 𝛻 it is basically 𝜕/𝜕𝑥 𝑖̂ + 𝜕/𝜕y 𝑗̂ + 𝜕/𝜕z 𝑘̂. So, then the next operator 

useful operator is Laplacian operator which is nothing but you know nabla squared ok. So, 

nabla that is del operator is also used in Laplacian operator and it is sometimes called nabla 

squared or del squared. So, this is basically showing double differentiation right. 

 

 So, if you can also write it as 𝛻. 𝛻 ok you can write them in the vector form boldface ok it 

turns out to be ∇2. which is basically multiplying this dot product with the same thing. So, 

you will get 𝜕2/𝜕𝑥2 + 𝜕2/𝜕y2 + 𝜕2/𝜕z2. So, this is basically double differentiation okay. Now, 

let us look into the gradient in more details. 

 

 

 

 

 

 



 
 

 So, a scalar field a scalar fields gradient is basically a vector field. Whose magnitude 

represents the rate of change? And which points in the general direction of the scalar fields 

greatest rate of increase? So here you can see as discussed that there is some positive 

charge here say and then there are more charges over here. So this is the way the gradient 

will be showing. Similarly, there is negative charge here and then more negative charges 

here. 

 

 So this is how it is. the gradient in this particular direction. So, now if 𝛻 is made to operate 

on scalar field say F is a scalar field here ok. So, when you want to take the gradient of that 

scalar field what you will get is a vector. So, it is represented like this in Cartesian 

coordinate system you can write gradient of field F ok. 

 

 So F is a scalar field. So you can write grad F or like this 𝛻F directly. So 𝛻F will be nothing 

but this that is the del and then you have F.  So you can actually write 𝜕F/ 𝜕𝑥 𝑖̂ + 𝜕F/ 𝜕y 𝑗̂+ 

𝜕F/ 𝜕z 𝑘̂.  So F is nothing but a scalar field, but then when you take the gradient this 

becomes a vector. So, that is why it is written here you see gradient of scalar field gives you 

vector. 

 

 

 

 

 



 

Next important one is divergence of a vector. So divergence quantifies the magnitude only, 

not the direction of the amount of vector field that flows out or into a specific region. In 

other words, the divergence calculates the amount of source or sink. for a given field. So if 

this is like electric field lines, electric field lines originate from a positive charge. 

 

 So if you see that the fields are coming out, it means there is a positive charge over there. 

And if you see that the fields are going in, it means there is a sink over there. That means a 

negative charge is over there. ok. So, how do you calculate this? So, if del is made to operate 

on a vector function F. 

 

 So, here electric field or any other vector field ok. So, you can actually see this is a bold 

phase F ok. So, you can calculate this as a dot product with your del operator. So, divergence 

of F is nothing but you know 𝛻. the vector field F, F also now will have three components Fx, 

Fy and Fz.  So, you can write 𝛻. F equals 𝜕Fx/𝜕𝑥 + 𝜕Fy/𝜕y + 𝜕Fz/𝜕z. 

 

 So, it tells you that what you get is a scalar ok. So, divergence of a vector field gives you a 

scalar.  

 

 

 

 

 



 

So, the calculation of curl quantifies the amount and direction of rotation of a vector field 

okay. So, the curl is always associated with the amount and direction of rotation okay. So, 

with the result being a vector perpendicular to the plane of the rotation. 

 

 So,  This is similar to a sense when a pseudo vector is used to represent rotation in physics 

okay. So, if there is a charge coming out okay. So, you can see that if there is a field that is 

vector field that is coming out okay. If you take the curl it will be like this in this direction 

okay and if that the vector field is going in the curl will be in the clockwise direction okay. 

 

 So, you can calculate curl. So, curl of a vector field F will be nothing but the cross product 

ok. So, when you take this is a vector this is a vector you take the cross product and this is 

what you get you get a vector. So, curl of a vector field also gives you a vector ok. So, curl of 

F (𝛻× F) will be nothing but 

𝑖(̂(𝜕𝐹𝑧)/𝜕𝑦−(𝜕𝐹𝑦)/𝜕𝑧)+ 𝑗̂ ((𝜕𝐹𝑥)/𝜕𝑧−(𝜕𝐹𝑧)/𝜕𝑥)+ 𝑘̂ ((𝜕𝐹𝑦)/𝜕𝑥−(𝜕𝐹𝑥)/𝜕𝑦).  So, this is simply 

a cross product of you know 𝛻 and F these two vector fields. 

 

 

 

 

 

 



 
 So, with that we can now move on to discuss the Gauss theorem or the divergence theorem 

which will be also useful in understanding you know Maxwell's equation. So, this particular 

theorem states that the flux of a vector quantity outward through a closed surface S. So, this 

is a closed surface S ok. So, this is the flux  that is coming outward is basically equal to the 

integral of the divergence of that function in the enclosed volume V. 

 

 So, graphically you can see here. So, if you think of calculating the flux that comes out of the 

surface of this particular enclosed volume ok. So, you can actually take F and then a cap is 

basically the normal of the surface. you integrate it over all the closed surfaces that will be 

same as taking the divergence of this field F and then integrate it over the volume. So, how 

do you interpret this result? So, if the given volume does not contain a source or a sink.  So, 

what do you expect then the net flux through that volume must be 0 it means whatever will 

enter must also exist ok. 

 

 So, the net flux will be 0 and it is possible to find such volume that will enter up an electric 

charge. because an electric charge represents an electric monopole. So, it is also possible to 

have you know only lines coming out of this okay if there is a positive charge over here or 

you can also have only a negative charge. So, in that case electric field lines will only enter 

this particular surface. So, you can actually have monopoles electric monopoles and this 

observations will lead to the first equation of Maxwell okay. 

 

 

 

 



 
 Now, if you consider the same thing for magnetic monopoles that is not the case ok. So, for 

magnets magnetic field you will see that it is not possible to find a volume which entraps a 

magnetic charge  that means you know  You have to always have, you know, north and 

south pole together. It means there are no magnetic monopoles and that is why you can say 

that the magnetic field is basically divergence less. Okay. So whatever enters this volume 

will be exiting the volume. 

 

 So there will be no divergence. So this leads to Maxwell's second equation.  

 

 

 

 

 

 

 

 

 

 

 



 

We then look into Stokes theorem. So Stokes theorem, it basically relates the surface 

integral of the curl of a vector to the line integral of the vector itself. So, if the Stokes 

theorem basically states that the surface integral of the curl of the vector field over an open 

surface S will be equal to the closed line integral of the vector along the contour enclosing 

that open surface. 

 

 So you can see this one. So it is like summation of all these curls will be equal to the 

summation of this particular line integral, closed line integral. So you can actually write it 

like this. So say you have curl of a vector F,  and that is there over this entire surface. So and 

A is basically a vector which is normal to the surface. So this will be equal to a closed line 

integral of the vector along the surface. 

 

 So, in other words the circulation of a vector around a given boundary is equal to the net 

curl over the whole surface of the patch limited by that boundary.  

 

 

 

 

 

 

 



 

Next, we come to constitutive relations. So, in order to apply Maxwell's macroscopic 

equation, it is necessary to specify the relationship between the displacement field D and 

electric field E as well as the magnetic field H. and the magnetic flux density that is B. So, 

equivalently we have to specify the dependence of polarization ok. 

 

 So, that is P and there we will have this bound current on the applied electric and magnetic 

field. So, this equation specifying this range response are called the constitutive relations. 

So, now first we will talk about the dielectric permittivity which is basically defined as a 

ratio of the electric field within a material and the corresponding electric displacement. So, 

D is basically written as epsilon naught E right. what happens when now so epsilon naught 

is basically the vacuum permittivity. 

 

 

 

 

 

 

 

 

 



 

 

 So, if you have a non polarized material without any electric field. So, here any there is no 

electric field. So, all these atoms are basically unpolarized and you can see the electron 

cloud dancing around the nucleus ok. So, there is no displacement as well, but as long as you 

as soon as you  put this material under the influence of electric field vector like this. What 

happens is atomic elements get polarized because the electron cloud moves away from the 

nucleus ok in the direction opposite of the electric field  and that will create a kind of charge 

separation of this bound charges and they basically work  like dipoles and this is the 

polarization that is happening in this particular material. 

 

 So, the material becomes electrically polarized okay. So, in that case you can basically 

explain the amount of polarization okay which is proportional to the electric field. So, more 

the amount of electric field you apply the charge separation will be larger.   So, the electric 

field and the electric displacement and electric polarization all of this can be related by this 

particular equation where D can be written as epsilon naught E plus P ok. So, this P is 

nothing but epsilon minus epsilon naught E. 

So, when you put that here you can actually get that. D equals epsilon E. So, this epsilon is 

basically the permittivity of this material. 

 

 

 

 

 



 

 

Now, when exposed to an external magnetic field, the collection of individual magnetic 

dipole moments within most materials will also attempt to reorient themselves in the 

direction of the field. So, this will generate an induced magnetism or you can say 

magnetization, okay. So, this will contribute to the net magnetic flux density inside the 

material. 

 

 So, in that case you can write B which is the magnetic flux density as nothing but mu naught 

(𝜇0) H.  𝜇0 is a vacuum permeability and H is the magnetic field strength plus 𝜇0M. So, this is 

the magnetization ok. So, when you do that together you write 𝜇0 H.  

 

 

 

 

 

 

 

 

 



 

Now, the degree in which the induced magnetization impacts the magnetic flux density 

depends on the materials magnetic permeability that is mu (𝜇). 

 

 So, what is 𝜇? 𝜇 magnetic permeability is basically the ratio of the magnetic flux density B 

within a material and the intensity of the applied magnetic field H okay provided the fields 

are sufficiently weak and that is typically the case. Now, if you consider a material which is 

non magnetic, so their magnetization cannot take place. So, you can write M equals 0 in that 

case your B will be simply mu naught H.  So, here in this particular course we will be mostly 

dealing with that kind of material which falls in this particular category of M equals 0 ok.  

 

 

 

 

 

 

 

 

 

 



 

Now with that understanding of constitutive relations now let us go and look into the 

Maxwell's equation. 

Now Maxwell's equation, so there an electromagnetic field is basically described by two 

related vector fields which are functions of position and time. So, you have electric field E as 

function of R and T, you also have a magnetic field H which is function of R and T. Now, after 

the myriad of researches carried out for fundamental reasons behind the origin or source of 

electromagnetic field  and the relationship between electric and magnetic fields by pioneer 

scientists like Ampere, Coulomb, Faraday and Gauss. Finally, the revolution happened when 

James Clerk Maxwell proposed a set of these fundamental equations in 1865 which are used 

to describe the electromagnetic properties of light.  

 

 

 

 

 

 

 

 

 



 

So Maxwell's equation these are basically collection of Gauss law, Faraday's law and 

Ampere's law but then put them together they are Maxwell's equation okay. 

 

 So  In general, there are six scalar functions of position and time required to describe an 

electromagnetic field in a medium. And fortunately, these six functions are interrelated such 

that they satisfy the celebrated set of coupled partial differential equations which are 

known as Maxwell's equations. So, this is the first equation which says 𝛻. 𝐄 =
𝜌𝑣

𝜀
. So, that is 

the Gauss law and 𝛻.𝐇 = 0  is basically the Gauss law for magnetism okay   𝛻 × 𝐄 = −𝜇
𝜕𝐇

𝜕𝑡
 

or you can simply write −
𝜕𝐁

𝜕𝑡
 that is Faraday's law  and    𝛻 × 𝐇 = 𝐉 + 𝜀

𝜕𝐄

𝜕𝑡
 that is also can be 

written as 
𝜕𝐃

𝜕𝑡
, so that is Maxwell Ampere's law okay. So here you can see that 𝜀 and E can be 

combined together in the form of D that is the electric flux density. 

So there are 6 important parameters here. So E is the electric field vector, H is the magnetic 

field vector, D is the electric flux density, B is magnetic flux density, 𝜌 is charge density and J 

is current density. So these are the important parameters okay. And as discussed that these 

are basically four laws derived by Gauss, Faraday and Ampere. But when you put them 

together to describe electromagnetic field that is the Maxwell's equation. 

 

 



 
  

 So, let us look into these equations one by one. The first one is Gauss law for electric field. 

So, here you can say that while the area integral of the electric field  okay gives a measure of 

the net charge and closed so this is the area integral of the electric field okay is giving you 

about the net charge and closed so this is the Maxwell's equation in So, you can integral 

form. So, you can write the net charge is Q, okay. That is nothing but the charge density 

integrated over the volume, okay. 

 

 In differential form, it looks pretty neat. So, you can simply write 𝛻. 𝐷⃗⃗ (𝑡) = 𝜌𝑉(𝑡), okay. 

That is the charge density, okay.  

 

 

 

 

 

 

 

 

 

 



 

 

Similarly, Gauss law for magnetism. So, there the net flux is always 0 for dipole sources. 

 

 So, you can see that 𝐵⃗ (𝑡). 𝑑𝑠  over a closed surface is 0. That means the flux that is entering 

is also exiting and this is possible because there is no monopole in magnetism right. So, 

there is no magnetic monopole and that is why the flux that will be  entering will also leave 

that particular closed surface. In differential form, it looks like this. So, it is 𝛻. 𝐵⃗ (𝑡) = 0.  

 

 

 

 

 

 

 

 

 

 

 



 

Now, Faraday's law tells us that the line integral of the electric field around a closed loop is 

equal to the negative rate of change of the magnetic flux through the area enclosed by that 

loop. 

 

 So, in  differential form this can be written as 𝛻 × 𝐸⃗ (𝑡) = −
𝜕𝐵⃗ (𝑡)

𝑑𝑡
 ok. So, this is also the 

electromagnetic force that is described in this particular form, but this differential form tells 

us that whenever you have a time varying you know magnetic field  okay, you will have a 

rotation in the electric field vector.  

 

 

 

 

 

 

 

 

 

 



 

 

Similarly, when you look into Ampere Maxwell's equation, so this gives that the total 

magnetic force around the circuit in terms of the current through the circuit plus varying 

electric field through the circuit that is basically the displacement current. So, I (t) in 

integral form can be written as closed line integral of H(t). dl ok and that can be written as 

ok surface integral of the displacement current plus the rate of change of the displacement 

electric field or the varying electric field ok. 

 

 and then you take the surface integral of it. So, differential equation or differential form is 

much more simpler. So, you can write as 𝛻 × 𝐻⃗⃗ (𝑡) = 𝐽 (𝑡) +
𝜕𝐷⃗⃗ (𝑡)

𝑑𝑡
 ok. It means if you have a 

current flowing. So, you will have a magnetic field ok which is rotating ok and then that also 

equates to the  time varying electric field. So, these two together will give you the rotation of 

the magnetic field. 

 

 

 

 

 

 

 



 

 
 

So, a brief description of the Gauss law the first one ok. The law was published 

posthumously in 1867 as part of collection of work by the famous German mathematician 

Gauss ok. this particular 𝛻.𝐷 = 𝜌𝑓 ok. These are different notations, but it stands for the 

free charge density ok. 

 

 So, this is the Gauss law for electromagnetism. Now, we can suppose that you know S is a 

closed area which has got a charge q at the center ok. So, you can actually write that the 

electric field  that is coming out okay and 𝑛̂ is basically the normal vector to this closed 

surface okay. When you do this integration you will get Q over 𝜀0. So, Guass law tells us that 

the flux of the electric field through S is basically total charge enclosed divided by the 

permittivity. 

 

 

 

 

 

 

 

 



 

  

So, this is the total you know flux that you are getting. in the differential form you can obtain 

by using the divergence theorem. So, instead of this particular surface integral you can 

convert this into a divergence and then volume integral right and 
𝑄

𝜀0
 can be written as 

volume integral of 
𝜌

𝜀0
.  So, when you take instead of this left hand side if you take this as the 

left hand side and instead of this right hand side in the previous equation if you take this as 

the right hand side. So, this is how you can put them together ok. So, it is like the volume 

integral of the divergence of E will be equal to the volume integral of rho by epsilon naught. 

 

 So, you can actually take this quantities and equate them together. So, you get divergence of 

E equals 
𝜌

𝜀0
. So, this is how you can write this particular equation. You can take𝜀0 and 

multiply to E and you can write that also as D fine.  

 

 

 

 

 

 

 



 

So, let us look into the Gauss law of magnetic field. So, Gauss law for magnetism states that 

no magnetic monopole exist and therefore, the total flux through a closed surface must be 0. 

 

 ok. So, you can actually see that any surface the amount of you know flux that is entering 

and exiting will be equal because if you start cutting a magnet into half each of those half 

magnets will also have the 2 poles ok. So, divergence of B equals 0 can be actually derived 

from surface integral of B equals   

 

 

 

 

 

 

 

 

 

 

 



 

 

Now, the third equation is coming from Faraday's law of induction, right. So, this is one of 

the first two equations that connect E and B. okay. So, that is very interesting because here 

you are actually getting a relationship between magnetic flux density and electric field. 

 

 And in the last equation, the fourth equation you will get the relationship between 

magnetic field and electric flux density. So, let us look into the first one here. So, the 

electromagnetic induction was discovered independently by Michael Faraday  in 1931 and 

Joseph Henry in 1932. But Faraday published his results first and so the law is known as 

Faraday's law of induction right. So, here it says that line integral of an electric field around 

a closed loop  is equal to the negative rate of change of the magnetic flux through that area 

and closed by the loop. 

 

 So, you can actually take a make a loop like this and take a magnet through this one ok  and 

you will can see that with the direction when you go this way the galvanometer shows 

positive current if you take it away it shows the negative current and so on. So, there is this 

negative sign coming to picture. 

 

 

 

 

 



 

 

So, you can also see that you know this integral form tells us about couple of interesting 

things that you can take induced electric vector field and then take a closed loop line 

integral ok, where 𝜕𝑙 stands for a very small length of that closed path. So, what do you get 

is nothing but −𝜕/𝜕t ok, that is the rate of change of the magnetic flux density through that 

closed surface. So, you do 𝐵⃗ . 𝑛.̂ 𝑛̂ is the unit vector  which is normal to the surface and this is 

how you obtain this ok. 

 

 

 

 

 

 

 

 

 

 

 



 
 

 So, you can use you can try to see the magnet Faraday's law of induction in differential 

form. So, here the physical meaning remains same it says that you know the changing 

magnetic field produces a circulating electric field. So, this curl of E means it is a circulating 

electric field ok. 𝜕B/𝜕t means changing magnetic field with time when I say changing 

magnetic field is basically changing with time. So, you can start with this equation that over 

a closed circuit 𝐸. 𝑑𝑙 ok and then you can use the Stokes theorem and write that you know 

this is equal to ∇ × E. dS ok. So, you can write ∇ × E. dS over surface integral is same as −
𝜕𝐵

𝑑𝑡
 

integral over that closed surface ok. 

 

 So, from this you can equate these two and say this quantity ∇ × E is basically equal to −
𝜕𝐵

𝑑𝑡
. 

So, this is how you can obtain the differential form.  

 

 

 

 

 

 

 

 



 

Now, coming to the fourth equation where actually Maxwell made a very important 

contribution. So, before Maxwell the world only knew that half of this equation and this half 

of the equation was known as Ampere's law. Okay and what is that law it says that you 

know a electric current going through the wire turns this current turns this wire into a 

magnet because when the current flows the magnetic field will be generated right. 

 

 And the direction of the magnetic field is obtained by right hand rule so where the thumb  

go in the direction of the current flow and the fingers basically tell you about the direction 

of the rotating magnetic field. So, Ampere had shown how to make magnetism from 

electricity right. So, right hand thumb rule also works well here.  

 

 

 

 

 

 

 

 



 

 

So, Ampere's law when there is no time dependence ok. it basically becomes Biot-Savart law 

you can directly write it from this particular Biot-Savart law that 𝐵. 𝑑𝑙 ok. 

 

So, this is 𝐵 ok. and 𝑑𝑙 is a very small path in this closed loop. So, when you do the 

integration you get 
𝜇0𝐼

2𝜋𝑟
 ok. So, finally you can write that 𝐵. 𝑑𝑙 closed loop integral is nothing 

but the kind and closed 𝜇0𝐼 ok.  

 

 

 

 

 

 

 

 

 

 



 

We can put B equals 𝜇0𝐻 in this integral form of Ampere's law. That is cyclic integral or you 

can say closed loop integral  ∮ 𝐵⃗ . d𝑙 = 𝜇0𝐼. 

 

And then the differential form of Ampere's law can be determined by using the Stokes 

theorem. So you can say that 𝜇0 can be adjusted here and you can write  H. dL is nothing,  

but I enclosed and closed loop integral of H. dL can be written as curl of H into a surface 

integral right. And current enclosed can be written as surface integral of the current surface 

current density right. So, these two can be equated  and you can simply write curl of H is 

nothing, but current density ok surface current density. 

 

 

 

 

 

 

 

 

 

 



 

 

 So, curl of H becomes J. So, this is  the Ampere's law without any time dependence. So, this 

is incomplete and it is not valid for electrodynamics. This is good for electrostatics, but not 

electrodynamics. So, now this is where you know Maxwell's law goes sorry Ampere's law 

goes wrong and incomplete and where Maxwell actually made his contribution to this 

Ampere's law by bringing into time dependence. So when Maxwell wrote down Ampere's 

law, he found that something is incomplete. 

 

 So how do you see that? You can take divergence of the Ampere's law. So Ampere's law is 

simply curl of H equals J. So you take divergence of it. So you get divergence of J. Now 

divergence of a curl is always 0. So, does it mean that divergence of J is also always 0, but 

that is not the case always right, electric currents obey the continuity equation. 

 

 And we have seen that you know, 
𝜕𝜌

𝜕𝑡
= −𝛻. 𝐉. It means  Mathematically, the curl of H should 

have something more than just this J, okay. So, Maxwell knew that a time varying magnetic 

field gives rise to a solenoidal electric field which is the Faraday's law. So, why not a time 

varying D field, okay, give rise to a solenoidal H field. So, that is possible.  

 

 

 

 

 



 

 

The universe loves symmetry so Maxwell introduced this term as displacement current 

density which is Jd that is nothing but 𝜕D/𝜕t. 

 

  

 

 

 

 

 

 

 

 

 

 

 

 



 

So, the fourth Maxwell's equation now states that the generation of magnetic field can be 

done in two methods. So, you can apply a surface current or electric current and you can 

also have changing electric field. So, that makes you know the ampere Maxwell equation 

complete. So, a flowing current J gives rise to a magnetic field that circles the current. So, 

that is pure Ampere's law and a time varying electric flux density D gives rise to a magnetic 

field that circles the D field ok. 

 

 So, that is the Maxwell's contribution. So, you can now write this as curl of H equals J plus JD 

where JD is nothing but 𝜕D/𝜕t.  So, you can write it in terms of you know this is the 

relationship between a electric flux density and magnetic field ok.  

 

 

 

 

 

 

 

 

 



 

So, we can now summarize the Maxwell's equation in terms of static and dynamic fields 

where electric and magnetic fields are independent of each other in the case of 

electrostatics whereas they are coupled to each other in the case of  So, you can see the 

equations in integral form over here. 

 

 So, the first equation remains same. Second equation is where you bring in the time varying 

magnetic flux density. Similarly, in the fourth equation, you also incorporate this new term. 

So, the new terms are shown in blue. If you want to remember only the differential form, 

you can say that ∇.D equals 𝜌𝑣 that remains same for electrostatic and electrodynamics. But 

curl of E equals 0, but curl of E is −𝜕B/𝜕t in case of electrodynamics. 

 

 So, a time varying magnetic flux density gives rise to a rotating electric field. right. 

Similarly, the Gauss law for magnetism that remains same, but then the Ampere's law is 

corrected as Ampere's Maxwell's equation okay, where this new term in blue is introduced. 

right. So, you can actually see the differences in the time varying case as compared to the 

static case which are basically highlighted in this blue colour. 

 

 So, with that we will come to an end to this basic discussion. So, thank you everyone. In case 

you have got any doubt regarding this lecture you can always drop an email to me at this 

email address mentioning MOOC and photon crystal on the subject line. Thank you. Thank 

you. 

 


