
Lec 4: Electromagnetic Properties of Materials 

 

 

Hello students, welcome to lecture 4 of this online course on photonic crystals fundamentals 

and applications. Today's lecture will be on electromagnetic properties of materials. So, in 

this week we will continue the electromagnetic theory of light starting from the derivation 

of wave equation from the Maxwell's equations. Then we will discuss some important 

electromagnetic properties of different materials.  

 

 

 

 

 

 

 

 

 

 

 



 

So here is the lecture outline, a quick recap of Maxwell's equation that you have seen in the 

last lecture. We will see how we can derive wave equations from that. 

We will discuss about the boundary conditions and then we will go into the electromagnetic 

properties of material. We will discuss about dielectric permittivity ε, magnetic 

permeability μ conductivity σ and  then we will look into the classification of materials by 

anisotropy, linearity, magnetization and conductivity. So, that will be our lecture outline 

today.  

 

 

 

 

 

 

 

 

 

 

 



 

So, in the last lecture we have seen that Maxwell's equations can be written in terms of 

static and dynamic fields where E and H fields are independent  if we are talking about 

static conditions like electrostatics or magnetostatics. 

 

 Whereas the fields the electric and magnetic fields are coupled when we talk about 

dynamics,  electrodynamics which actually tells about time varying fields. So, here you can 

see that these are the Maxwell's equation in integral form for electrostatics or 

magnetostatics and this is for electrodynamics. So, here what you can see that this blue 

terms are the addition when you are talking about time varying or dynamic case. These are 

the same equations but in differential form. So, I will not go and repeat these equations we 

have seen that in the last lecture. 

 

 But just to remind you that there are a couple of changes when you go from static to 

dynamic cases ok. Something like curl of E is 0 when you are talking about electrostatics or 

magnetostatics ok. But in the dynamic case you can actually see that curl of E is nothing but 

−𝜕𝐵/𝜕𝑡. Similarly Ampere's law which gets modified to Ampere's Maxwell's equations 

okay. So it modifies in this particular form. 

 

So curl of H is now given as  J plus JD the displacement current density or you can write the 

term as 𝜕D/𝜕t that is the time varying electric flux density. So, here in the note it is 

mentioned that this time varying cases in the time varying cases which are you know the 

changes that are basically highlighted in blue color for quick visualization.  

 

 



 

Now, let us start with how to determine. the electric and magnetic field propagation 

through a particular region right. So, this can be described in the form of wave equation. 

 

 So, when we talk about wave equation electromagnetic wave equation is nothing but a 

second order partial differential equation that describes the propagation of electromagnetic 

wave through a particular medium or in vacuum. So, here you can see that the electric and 

magnetic fields are coupled to each other and they are oscillating in their own plane and 

then this is the wave propagation direction. homogeneous form of the equation written in 

terms of either electric field or magnetic field is called the wave equation. So, typically it 

looks like this. So, you have Laplacian of electric field vector which is a function of position 

and time that is equal to 1/v2, v is basically the phase velocity of the wave propagating in a 

particular medium. 

And then you have the second order partial derivative with respect to time of that particular 

vector field. So, the same equation could have been written in terms of magnetic field as 

well. So, instead of E you could have placed B and that will give you again the wave 

equation. 

 

 

 

 

 

 



 
 So, our goal here is to determine how the wave equation can be derived from Maxwell's 

equation. So, to start with let me throw a vector identity okay and this is basically a 

mathematical manipulation that is true for all magnetic fields. 

 

 So, curl of curl of H can be written as gradient of the divergence of the particular field 

minus the Laplacian of the field. So, once we know that vector identity we can actually use 

the curl equation. okay to obtain the wave equation. So, you start with curl of E which is -

∂B/dt, B can be written as μH. So, you can also write it at -μ∂H/dt. 

 

 Now, in this equation if you take curl on both the sides you get 𝛻 × 𝛻 × 𝐄 which is nothing 

but -μ∂/dt. H will now be replaced with curl of H. Now if you consider that we are in a 

source free region that means there is no charge or current flowing anywhere we can 

actually take this gradient term as 0 okay. So what happens this 𝛻 × 𝛻 ×H can be simply 

written as −𝛻2𝐇. So this is how you can actually compute this H can be written in terms of 

the  three components Hx, Hy and Hz. 

 

 So, you can finally write this equation in this particular form that 𝛻 × 𝛻 ×H equals ∇2H.  

Remember this is for the case where we are assuming that we are in a source free region 

that is there is no charge or no current is flowing. So, if you replace this by electric field you 

get 𝛻 × 𝛻 ×E is nothing but −∇2E.  

 

 

 

 



 

So, how do you get that? So, what what we have till now? We we know that 𝛻 × 𝛻 ×E is 

nothing but −∇2E ok and that can be written from the previous one. So, 𝛻 × 𝛻 ×E we have 

obtained that is basically this term the right hand side. 

 

 You can equate those two here. So, you equate those two here, okay? So, this is what we 

have. The right 𝛻 × 𝛻 ×E is −∇2E, which can be written as μ∂/∂t (𝛻 ×H). Now, the 𝛻 ×H can 

be replaced by ∂D/∂t + J. Now remember, we are talking about a source-free region, so we 

can take 𝐉 to be 0, okay? So, what we are left with is only this term, and D can be written as 

𝜀E. 

 

 So, you can take out 𝜀, which is a constant. You can take it out of this derivation. So, you get 

−𝜇𝜀
𝜕

𝜕𝑡
(

𝜕𝐄

𝜕𝑡
). Therefore, you can write 𝛻2𝐄 = 𝜇𝜀

𝜕2𝐄

𝜕𝑡2 . 

 

  

 

 

 

 

 

 

 



 

So, this is your vector wave equation.  The connection between electromagnetic optics and 

wave optics is now more evident, as you can see that the wave equation, which is the basis 

of wave optics, is essentially embedded in the structure of electromagnetic theory. The 

speed of the electromagnetic wave is related to two important electromagnetic constants, 𝜀 

and 𝜇. We can actually compute the speed by comparing these two forms of the wave 

equation, where you can write 𝛻2𝑬 = 𝜇0𝜀0𝜀r
𝜕2𝑬

𝜕𝑡2 . 

 

 So, 𝜇0 is the vacuum permeability, 𝜀0 is the vacuum permittivity, and 𝜀r is the relative 

permittivity. So when you compare this wave equation with this particular form, you can 

see that 𝑣2 is nothing but this term. 

 

 You can write 𝑣2 =
1

𝜇0𝜀0

1

𝜀r
. Thus, the term 

1

𝜇0𝜀0
 can be expressed as c02,where c0 is the speed 

of light in a vacuum. So, that is how you can actually correlate the phase velocity with the 

velocity in that particular medium in vacuum divided by the permittivity of the medium in 

which the wave is propagating. So, it is basically 𝑣2. So, from this, you can also see that if you 

take the square root of it, you can simply get 𝑣 =
𝑐0

√𝜀r
. 

The square root of 𝜀r is essentially the refractive index of the medium, which is the 

fundamental definition of refractive index. So, the refractive index tells you the ratio of the 

speed of light in vacuum to the speed of light in that particular medium. So, that is how you 

can actually get n. The relationship between n and 𝜀r in a non-absorbing medium is basically 

very simple: n equals the square root of √𝜀r. So, all these parameters you should remember; 

they are very basic things: 𝜇0 is 4π×10−7 H/m, 𝜀0 is 8.854×10−12 F/m, and this is the speed of 

light. So, we typically take this as 3 ×108 meters per second. To keep the calculations easy, 

we should. 

So, 𝑐0 is basically computed as 1 over the square root of 𝜇0𝜀0.  



 

Now, coming to the boundary conditions, this is very important when you want to solve the 

field equations at different boundaries of the medium. Whenever there are two mediums 

coming next to each other, there will be a boundary, and you have to determine the 

conditions that allow your fields to cross the boundary. At the interface of two media with 

different optical properties, the optical field component must satisfy certain boundary 

conditions. Now, what are those? The boundary conditions basically describe 

electromagnetic fields, such as the electric field. 

 

 The electric displacement field D, the magnetic field H, and the magnetic flux density B, also 

known as the magnetic displacement field, are all important concepts. Now, if you consider 

a source-free region, we can say that the tangential components of E and H must be 

continuous across the interface, while the normal components of The flux density or the 

displacement fields D and B must also be continuous. So, here you can see that this is 

medium 1, this is medium 2, and this is the boundary. So, what we are basically saying is 

that the tangential component of H can be calculated as the unit vector n crossed with H1. 

Similarly, this is the tangential component of the magnetic field in the second medium; these 

two should be continuous. 

 

 Similarly, the electric field should also be continuous, and this is essentially the normal to 

the interface. So, the normal component of the electric flux density or electric displacement 

field. So, D1n should be equal to D2n; similarly, the magnetic flux density or magnetic 

displacement field B1n should be equal to B2n. So, these boundary conditions can also be 

derived from Maxwell's equations. So, always remember that in this particular case, we are 

considering that there is no surface charge. 

 



 

 

 So, what we have seen is that the curl equations basically give us the tangential components 

of the field at the boundary. So, we are basically looking at �̂� × 𝑬1 = �̂� × 𝑬2. Similarly, �̂� ×

𝑯1 = �̂� × 𝑯2. What is �̂�? �̂� is basically this vector, okay. So, when you take the curl, you 

essentially obtain the tangential components. Similarly, if you look into the divergence 

equations, we are basically calculating the dot products with �̂�. 

We are essentially examining the normal components of D and B. You can say that �̂� D1 

should be equal to �̂� D2, and �̂� B1 should be equal to �̂� B2. When there is no surface charge, 

we understand that the tangential components of E and H must be continuous across the 

interface, while the normal components of D and B are continuous.  

 

 

 

 

 

 

 

 

 

 



 

Now, what happens when there is a surface charge present or when there is some current 

density? So, now let us look into the boundary conditions and how they will change if there 

is some surface charge or charge density present. The concept of surface charge density will 

have practical usefulness in this case. 

 So, we have seen that it is often very convenient, mathematically, to define regions where 

you know the electric and magnetic fields are zero. Now, let us assume that there is a plane 

boundary condition or plane boundary surface at z equals 0, separating two regions: region 

1 and region 2. So, region 2 is at the bottom, region 1 is at the top, and this surface is 

basically at z equals 0, okay? We can derive the boundary conditions for H by using a small 

pillbox, as shown in this figure, by letting ∆z approach 0. Now, the media occupying such 

regions are called perfect conductors, which are basically idealizations of media where the 

fields inside are considered to be vanishingly small. So, in that case, we can assume that all 

fields in region 2 are basically 0. 

 You can say that E2, H2, B2, and D2 are all equal to 0. Now we assume that electric charges 

and currents are located primarily on a very thin layer on the surface of the perfect 

conductor. Thus, on the surface of the perfect conductors, we assume that ρ is infinite and is 

contained in a medium of zero thickness.  

 

 

 

 

 



 

So, this is what the surface charge density in that case, ρs, will be: you know, ρΔz, where z 

tends to 0. So, if we can, we know that D2 is already 0 because there is nothing below the 

surface, whereas �̂� D1 is not 0 because there is surface charge density. 

 

 So, �̂� D1 is basically ρs. You can see that there is a difference between the D field 

components that are normal to the boundary surface, and this difference is equal to the 

surface charge density that lies at the boundary surface. Similarly, we can now assume that 

Jx and Jy are infinite to create a surface charge density Js when ∆z tends to zero. So, you can 

write Js equal to JΔz, okay? So, the value of J tends to infinity; however, we are operating in a 

limit where the pillbox is infinitely thin. So, it is as z tends to 0. So, that is how you actually 

get the surface current density correct. 

 

 

 

 

 

 

 

 

 



 

So, in that case, you can write that while your H2 shows the magnetic field in region 2 is 0, 

the tangential component of the magnetic field is not. In region 1, the intersection of n and 

H1 is not 0; rather, it is the surface current density Js. So, here we can see that there is a 

discontinuity in the tangential component of the magnetic field, which is equal to the 

surface current at the boundary surface. So, finally, we can rewrite the boundary conditions 

in the presence of surface charge and current density, as we can see in this particular table. 

So, if you write it in terms of a vector field. So, here you know these are continuous. You can 

write it as �̂�, or you can write �̂�𝑛. The cross product with E1 − E2 is 0. So, that is where the 

tangential component of the electric field is continuous, but it is disrupted whenever there 

is a surface current. The tangential component of the magnetic field shows a discontinuity, 

and the difference between the two is given by this current density. 

So, you can simply write Ht1 − Ht2 equals Js; this is the scalar form. In the vector form, the 

tangential component is calculated using the cross product. And if you talk about the 

discontinuity of the normal electric flux density. So, you can simply write Dn1 minus Dn2 

equals ρs; that is the scalar form, and in vector form, this is calculated as a dot product with 

the �̂� vector. You could have simply written "�̂�," or you can write �̂�𝑛. 

 

Both refer to the same thing: the unit vector along the surface normal. The difference 

between D1 and D2 gives you this. ρs is okay, and this is how your magnetic field is 

continuous across the surface and the boundary, and this is how you can write it. So, you 

can actually see that the presence of the surface charge density and surface current 

basically affects these two equations. The tangential component of the magnetic field will no 

longer be continuous; there will be a discontinuity, and the amount of discontinuity is given 

by the surface current. Similarly, the normal component of the electric flux will not be 

continuous; the discontinuity is caused by the surface charge density.  



 

So now let us look into the electromagnetic properties of the material, okay? So now we will 

see how electromagnetic waves behave differently in different materials while propagating. 

In other words, you can say that several materials can be classified based on their 

electromagnetic properties. We can start with the constitutive relations, where we can 

define the fundamental electromagnetic properties of materials. So, there are three 

fundamental properties: electric permittivity (𝜀), magnetic permittivity (𝜇), and electric 

conductivity (𝜎), right. So, these are the constitutive relations. 

 

 So, D equals 𝜀E. This tells you about the electric response of the material; B equals 𝜇H, 

which tells you about the magnetic response of the material; and J equals 𝜎E. It tells you 

about Ohm's law and the electrical conductivity of the material, right.  

So, if you want to understand what happens with electric response, this is basically 

dielectric permittivity. This epsilon is a diagnostic physical property that characterizes the 

degree of electrical polarization a material experiences under the influence of an external 

electric field. Similarly, from the magnetic response, you can say that magnetic permeability 

is a measure of how well a medium stores magnetic energy. Right, and 𝜎 is a measure of 

how well it conducts the field. 

 

 

 

 

 



 

 

So, at first, we will define the dielectric permittivity 𝜀, and this permittivity is closely related 

to the capacitance. So, you can see that dielectric permittivity is essentially a measure of 

how well a medium stores electric energy. It can be thought of as a measure of how much 

interaction an electric field has with the medium in which it resides. So, the permittivity 𝜀 

can be defined as the ratio of the electric field E to D. Therefore, you can see that epsilon 

naught can be expressed as D over E, right. You can say that permittivity is essentially the 

ratio between the electric field E and the corresponding electric displacement. 

 

 So, if you want to understand what displacement looks like, this is a pictorial 

representation of it. So, what happens? This is a non-polarized material, so you have a 

positive nucleus, and then you have an electron cloud. So, these basically represent 

unpolarized atomic elements. However, when you expose this material to an electric field, 

the bound electrical charges of opposite signs will try to separate from each other, and the 

extent of the separation of the electrical charges within a material. 

 

It is represented by the electric polarization. You can say that in this particular material, 

where there is no electric field present, the displacement is also 0 and the polarization is 

also 0. Here you can see that the polarization is basically 𝜀 − 𝜀₀ into E. Therefore, there is an 

effective displacement in the presence of this electric field, and that is D equals 𝜀E. Okay. 

The electric field displacement and polarization are related by this particular expression. 

 

 You can write that D equals 𝜀₀E + P, and you can simply express these two together as 𝜀E, 

okay.  

 



 

Now, we will define the constitutive relations for a linear, homogeneous, and isotropic 

medium. Now, in linear media, the properties of the material do not depend on the strength 

of the field. It means that here the polarization P is linearly proportional to E. Therefore, you 

can simply write P equals 𝜖₀𝜒E. So, what is chi 𝜒? Chi is essentially a scalar constant known 

as the electric susceptibility. 

 

 Then we can write D equals 𝜖₀E + P. So, you can replace P with 𝜖₀χE. You can take 𝜀 as 

𝜀0(1 + 𝜒), and this (1 + 𝜒) is nothing but your relative permittivity 𝜀𝑟. Therefore, I believe 

that 𝜀0 and 𝜀𝑟 together can be written as 𝜀. So, that is how all these equations are related: D 

equals 𝜀E, or you can write 𝜀₀𝜀ᵣE, or you can write 𝜀₀(1 + 𝜒)E, okay. So, this is how you can 

correlate the displacement field with vacuum permittivity, relative permittivity, or 

susceptibility.  

 

 

 

 

 

 

 

 



 

Now, when you come to magnetic permeability (μ), okay. Inside a material medium, as we 

have seen, permittivity is determined by the electrical properties of the medium. 

 

Permeability will be determined by the magnetic properties of the medium, right. So, 

magnetic permeability is simply a measure of how well a medium stores magnetic energy. 

So, when exposed to an applied magnetic field. The collection of individual magnetic dipole 

moments within most materials will attempt to reorient itself along the direction of the 

field. So, this will generate an induced magnetization, and it will contribute to the net 

magnetic flux density inside the material. So, the degree to which the induced magnetism or 

magnetization impacts the magnetic flux density depends on the material's magnetic 

permeability. 

 

 Magnetic permeability can be defined as the ratio of the magnetic flux density B within a 

material to the intensity of an applied magnetic field H. You can say that μ is nothing but a 

ratio of B and H. Therefore, μ equals B divided by H, provided that the fields are sufficiently 

weak. So, if you want to express B in terms of 𝜇0𝑯, this is the vacuum permeability plus 𝜇0𝑴, 

where M is the measure of the magnetization of the material, and these two together can be 

written as 𝝁𝑯, okay. So, μ₀ is basically the permeability of free space, and μ is the 

permeability of that particular medium.  

 

 

 

 



 

The next important parameter is conductivity, which describes the degree to which a 

material conducts electricity. 

So, this is purely associated with the electric field, okay. So, when an electric field is applied 

to a material, free charges within the material will experience an electrical force, which is 

also known as the Coulomb force. This force will cause the free charges to move through the 

material along the direction of the applied field, and that is how you will get a. So, the 

electrons, which carry negative charges, will move in the opposite direction of the applied 

field, while the holes will move in the direction of the electric field. So, you are basically 

getting a current. So, the current will be in the direction of the flow of holes or in the 

opposite direction of the flow of electrons, right. The ease with which the electrical charges 

move through a material under the influence of an external electric field depends on the 

material's electrical conductivity. 

 You can say that when an electric field is applied, you can obtain a surface current density 

𝐽 = 𝜎𝑬. Once you know 𝐽, if you take a cross-section A, multiplying J by A will give you a 

current I across this particular cross-section, right. Electrical conductivity can be defined as 

the ratio of the current density J within a material to the electric field E. This relationship is 

also known as Ohm's law. 

So J equals 𝜎E. What is 𝜎? Sigma is nothing but J divided by E. 𝜎 is also the reciprocal of 

resistivity. So, this is conductivity; this is resistivity. So, kind density is basically defined as 

electrical kind per unit cross-sectional area. In many cases, the electrical properties of a 

material are characterized by the electrical resistivity 𝜌. 

 

 So, 𝜌 is nothing more than the reciprocal of electrical conductivity. So, you can see that the 

unit is basically an ohm meter.  

 



 

So, how do you obtain the velocity that you have already discussed? So, when you compare 

the two wave equation forms, you can see that this particular quantity will be equated to 

this one. You can simply 𝑣2 =
1

𝜇0𝜀0

1

𝜀r
. Essentially, that is 𝑐0

2; c0 is nothing but the speed of 

light in a vacuum, and 𝜀r is the relative permittivity. Now, as I mentioned earlier, there is 

also a relationship with the refractive index. 

So, if you take the square root of this particular equation, you will get v equals c0 divided by 

the square root of 𝜀r, which is nothing but your n in a medium that is non-absorbing. So, you 

can say that n is nothing but the ratio of c to v, which is the square root of 𝜀r, and this can 

also be written as the square root of 1 + 𝜒. So, if you know the electrical susceptibility of a 

material, you can also find out what the refractive index is, and that basically tells you the 

speed of light in that particular medium.  

 

 

 

 

 

 

 

 

 



 

So, now let us classify the materials by the different electromagnetic properties that we 

have already seen 

 So, let us see how we classify materials by anisotropy. Now, when I say anisotropy, I first 

need to understand what isotropic means. So when I say isotropic, I mean that the 

properties are independent of the direction of the field. Something like this: D equals 𝜺E, B 

equals 𝝁H, and J equals 𝝈E. All these properties, 𝜺, 𝝁, and 𝝈, are independent of the direction 

of the field. So, by isotropy, we can say that the E field is basically proportional to the D field, 

and the H field is proportional to the B field, and so on. 

 

 But when you introduce anisotropy, it means the properties now depend on the direction 

of the field. It means the E field is no longer parallel to the D field, and the H field is no 

longer parallel to the B field. Therefore, you can actually represent these parameters as 

tensors. So, a medium is electrically anisotropic if it is described by a permittivity tensor, 

which is given by this, and it has a scalar permeability. We can call a medium magnetically 

anisotropic if its permeability is primarily described by a tensor and it has a scalar dielectric 

permittivity. 

 

 

 

 

 

 



 

 

 So, for an anisotropic medium, the constitutive relationships can be written in a general 

form similar to D equals ε̅, which is another representation of the permeability tensor, and 

then you have the electric field, right? Similarly, B equals the permeability tensor times the 

magnetic field. So, these properties are basically independent of the direction of the fields. 

The crystals are generally described by symmetric permittivity tensors. There always exists 

a coordinate transformation that would transform that symmetric matrix into a diagonal 

matrix. In this coordinate system called the principal system, you will see that the tensor 

basically looks like this, with only the diagonal elements: εₓ, εᵧ, and εz. 

 

 These represent the permittivities along the x, y, and z directions, respectively. Now let us 

assume that the principal axis of the crystal looks like this; the permittivity is given as 

follows. Now, if you take a cubic crystal where x, y, and z are all the same, it becomes 

isotropic. But if you consider tetragonal, hexagonal, or rhombohedral crystals, two of these 

parameters will be equal. So, these kinds of crystals are basically called uniaxial crystals. 

 

 

 

 

 

 

 



 
 So, maybe epsilon x and epsilon y are equal, while epsilon z is different. So, in that case, you 

can simply write epsilon in two instances, and epsilon z will be written differently. So, this is 

how the permeability sensor of a uniaxial crystal will look. Now, what happens to the 

permittivity along the z direction if it is greater than the permittivity of this tube? We can 

say that this is a positive uniaxial crystal. In the other case where epsilon z is smaller than 

epsilon, we can refer to it as a negative uniaxial crystal. Now there are crystals that are also 

biaxial; these are basically orthorhombic, monoclinic, and triclinic crystals where all εx, εy, 

and εz are unequal. 

 

 So, when all of them are unequal, the medium is biaxial, which means that every direction 

will have a different dielectric permittivity.  

 

 

 

 

 

 

 

 

 



 

So, now let us see how the materials can be classified as linear and nonlinear media. So, 

when you say "linear medium" here, the property of the material does not depend on the 

strength of the field, okay. The electric polarization P is basically linearly proportional to the 

electric field E. Therefore, you can simply write P equals 𝜀0𝜒E, where 𝜒 is the electric 

susceptibility. 

 

 Thus, you can write D equals 𝜀0E + P. Since P can be replaced by 𝜀0𝜒E, you can factor this 

out, and this is what we have seen until now, right? Now, if you go to a non-linear medium, 

the properties basically depend on the intensity of the field. In a non-linear medium, the 

electromagnetic response can often be described by expressing the polarization P as a 

power series in the field strength E. Thus, you can write the polarization as 𝜀0[𝜒(1)�̃�(𝑡) +

𝜒(2)�̃�2(𝑡) + 𝜒(3)�̃�3(𝑡) + ⋯, and so on. So, you are actually seeing that you are getting 

higher-order non-linear terms, like this, because of the higher field intensity or strength. 

This quantity is 𝜒2 and 𝜒3; they are known as second and third order non-linear optical 

susceptibilities, right. 

Now, that was about the classification of materials by their electric field properties. 

 

 

 

 

 

 



 

 
Let us now classify materials by their magnetization properties. So, we are basically talking 

about magnetic materials. The constitutive relationship is nothing but 𝑩 = 𝜇0𝑯 + 𝜇0𝑴 =

𝜇𝑯 which can be expressed as 𝑩 = 𝜇𝑯. Now, a magnetic material is basically diamagnetic if 

𝜇 is smaller than the vacuum permeability, 𝜇0. That means the relative permittivity 𝜇r, which 

is basically the ratio of 𝜇 over 𝜇0, is less than 1. 

 So, some examples of this kind of material are bismuth, copper, zinc, etc. So, diamagnetism 

is essentially caused by induced magnetic moments that tend to oppose the externally 

applied magnetic field. So, when a diamagnetic material is placed in a magnetic field, the 

external field is partially expelled, and the magnetic flux density within it is slightly reduced. 

Another type is called paramagnetic. If your μr, which is the ratio of μ and μ0, is greater than 

1, we call it paramagnetic. 

 Examples include manganese, aluminum, chromium, platinum, etc. So, paramagnetism is 

due to the alignment of magnetic moments. So, when a paramagnetic material such as 

platinum is placed in a magnetic field, it becomes slightly magnetized in the direction of the 

external field. The third category is called ferromagnetic. So, here, if you know that relative 

permeability is not constant, it is very large. 

 An example of this kind of material is iron, cobalt, and nickel. So, in a ferromagnetic 

material such as iron, it does not have a constant relative permeability. As the magnetizing 

field increases, the relative permeability also increases, reaching a maximum before 

decreasing. So, these are the three different types of materials that can be classified based 

on their magnetization properties. So, purified iron and many magnetic alloys have 

maximum relative permeabilities of 100,000 or more based on this. 



 
  

Now, let us classify materials based on their conductivity. Now, based on the relative values 

of electrical conductivity (𝜎) or resistivity (𝜌), which is essentially the reciprocal of sigma, 

solids can be broadly classified as metals, where they possess very low resistivity or, 

conversely, very high conductivity. So, sigma is much larger than 1. Then you have 

semiconductors, which have conductivity that is intermediate between metals and 

insulators, meaning they possess qualities that are in between those of metals and 

insulators. So, insulators are basically materials that have very high resistivity, or you can 

say very low conductivity, meaning that sigma is much less than 1 in the case of insulators. 

Here is a table that actually describes the different properties of conductors, 

semiconductors, and insulators. 

 

  

 

 

 



 
 The resistivity of a conductor is in the range of 10 to the power of minus 6 to 10 to the 

power of minus 8 ohm-meters. For semiconductors, it is from 10 to the power of -4 to 0.5, 

and for insulators, it is very, very high, ranging from 10 to the power of 7 to 10 to the power 

of 16. So, conductivity will be the inverse of it, and you can see that the unit is more per 

meter. The temperature coefficient of resistance for a conductor is positive, which means 

that as the temperature increases, the resistance also increases; for a semiconductor, it is 

negative. 

So, it is the other way for insulators as well. In conductors, the current is mainly due to free 

electrons; in semiconductors, it is due to both electrons and holes. Insulators do not support 

any current. Conductors do not have any energy gap. Semiconductors have an energy gap 

ranging from 0 to 1 electron volt, or sometimes a little more. 

And then, insulators have more than 6 electron volts. Examples of conductors include 

platinum, aluminum, copper, and silver. Semiconductors, as you all know, include 

germanium, silicon, gallium arsenide, and so on, okay? Insulators include materials such as 

wood, plastic, and others. So, with that, we come to the end of this lecture. We will start the 

discussion on electromagnetism as an eigenvalue problem in the next lecture.  

 

So, if you have any doubts or queries regarding this lecture or any of the previous lectures, 

you can send your questions to this email address, mentioning "MOOC" and "photonic 

crystal" in the subject line. 

 


