
Lec 5: Scaling Properties of Maxwell's Equaltions 

 
  

Hello students, welcome to lecture 5 of the online course on Photonic Crystals 

Fundamentals and Applications.  

 

Today's topic will be on electromagnetism as an eigenvalue problem. So, here is the lecture 

outline. So, we will look into the macroscopic Maxwell's equations, then we will introduce 

electromagnetism as an eigenvalue problem. What it means for an operator to be an 

Hermitian  we'll discuss about the general properties of the harmonic modes. We'll 



introduce the concept of orthogonality and  present electromagnetic energy, how to 

compute that and the variational principle and then we will discuss about why we prefer 

magnetic fields versus electric fields in these calculations. 

 

 
 So, the first topic will be covering macroscopic Maxwell's equations. So, in order to study 

the propagation of light in photonic crystal, we begin with Maxwell's equation and this we 

have already seen in the previous lectures. So these are the four Maxwell's equations which 

are nothing but Gauss law, Gauss law for magnetism, Faraday's law and Ampere's Maxwell's 

law. So these are basically two divergence equation and two curl equations that correlate 

electric and magnetic field with electric displacement field and magnetic induction field 

along with ρ and J which are basically free charge and current densities. 

 

 

 

 

 

 

 

 

 



 
 So, in this discussion we restrict ourselves to propagation within a mixed dielectric 

medium. So, when we say mixed dielectric medium it is basically a composite of regions of 

homogeneous dielectric material. as a function of the Cartesian position vector which is r, 

okay, in which the structure does not vary with time and there are no free charges or 

current. So, you can actually see small islands of different permittivity but each of this 

region are basically homogeneous. So, this is a overall a composite of the macroscopic 

regions, okay. 

 

 So, what is important here to note that there are no charges or currents and this  composite 

need not be periodic. So, with this type of medium in mind in which the light propagates, 

but there are no sources of light. So, we can set ρ equals 0 and J equals 0. So, now we relate 

the electric displacement field to electric field and magnetic induction field or magnetic flux 

density to the magnetization field or magnetic field, okay. and that is done via the 

constitutive relations. 

 

 

 

 

 

 

 



 
 So, these are the two constitutive relations where D is a function of r can be written as ε0 εr. 

So, here the permittivity is basically function of position and also electric field which is also 

function of position. Similarly, B(r) can be written as μ naught μr H(r). So, for most dielectric 

materials of interest the relative magnetic permeability which is μr is found to be very close 

to 1. So, you can simply put this as 1 that simplifies your this equation and you can write it 

as B equals μ naught H for simplicity. 

 

 So under this kind of assumption the Maxwell's equation will look like this. So you can 

write 𝛻.𝐇(𝐫,𝑡) which is 0 okay and 𝛻.D equals 0 and D can be written as 𝜀(𝐫) okay. E(t) or E 

(r, t) and these are the two curl equations. 

 

 So, curl of E is nothing but -𝜕B/𝜕𝑡. So, if you take the term on the left hand side and B you 

can write as 𝜇0𝐇 you get this particular equation. Similarly, the fourth equation where J 

equals 0 you can write it as 𝛻×𝐇 equals 𝜕D/𝜕𝑡. So, that can be taken on the left side and you 

can write 𝛻×𝐇(𝐫,𝑡)−𝜀0 𝜀(𝐫)(𝜕𝐄(𝐫,𝑡))/𝜕𝑡 equals 0. So, in general both E and H fields are 

complicated functions of both time and space. 

 

 

 

 

 

 

 



 
 because the Maxwell's equations are linear. However, we can separate the time dependence 

from the spatial dependence by expanding the fields into a set of harmonic modes. So, we 

will examine these restrictions that Maxwell's equation impose on the field pattern that 

varies sinusoidally or you can say harmonically with time. There is no great limitation since 

we know that by Fourier analysis we can build any solution with an appropriate 

combination of this harmonic modes. So often, we will refer to them simply as modes or 

states of the system. 

 

 So we don't call them harmonic modes all the time, but we can simply call them modes. For 

mathematical convenience, employ the standard trick of using a complex valued field and 

remembering to take the real part of it to obtain the physical field. And this will allow us to 

write the harmonic field as a spatial pattern which is also known as the mode profile times a 

complex exponential, 

 

 

 

 

 

 

 

 



 

So, mathematically that field can be written as this. So, H which is a function of position and 

time can be written as H(r) which is only having spatial dependence and then you have a 

time exponential which is 𝑒^(−𝑖𝜔𝑡). 

 

 So, this is the complex exponential. So, similarly the form for magnetic field can also be 

written for electric field and you get this particular equation. So, to find the equations 

governing the mode profiles for a given frequency what you can do you can insert the above 

equations into the Maxwell's equation. So, when you put them into the Maxwell's equation, 

so these are the Maxwell's equation that you have seen in the previous slide. You can obtain 

the two divergence equation which are simply this 𝛻. 

 

𝐇(𝐫) equals 0 and you will find 𝛻.[𝜀(𝐫)𝐄(𝐫)] equals 0. Now these two equations have very 

simple physical interpretation okay. So there are no point sources or sink of displacement 

and magnetic field in the medium. So this is the physical interpretation of these two 

particular equations. 

 

 

 

 

 

 



 
 Now equivalently the field configuration are built up of electromagnetic waves that are 

transverse. if we have a plane wave that is expressed as 𝐇(𝒓) = 𝒂 exp(𝑖𝐤 · 𝐫). So k is the 

wave vector and r is the position vector okay. So in this case the ever mentioned divergence 

equation okay  of this one will require that 𝒂 · 𝒌 the dot product of these two should be 0. 

Now, you can use the two curl equations which basically  correlate electric field with 

magnetic field. 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 So, you can write this from the third Maxwell's equation. So, 𝛻×𝐄(𝐫,𝑡) equals you know 

−𝑖𝜔𝜇0 𝐇(𝐫). So, you have actually you know taken that time dependence and try to  write 

this down okay. So, if you remember the time dependence that you have seen here, so you 

can take this okay. So, 𝑒(−𝑖𝜔𝑡) you can take the time derivative of it that will give you that 𝑖𝜔 

term that comes in the that comes over here right. 

 

 So, this is how you can write that. So, similarly the fourth equation can be written like this  

So, decouple these equations by dividing the right side equation by epsilon r. So, if you 

divide this by 𝜀(𝐫) you will only have the expression for E(r) okay and then you take it on 

the other side you take a curl of that okay and that curl can be equated to this one because 

this is also curl of E(t). So, the mathematics is pretty simple here I urge all of you who were 

not able to you know visualize this you can do it on pen and paper and you will see that you 

can actually eliminate E(r) from the expression by using these two expression and you can 

have everything in terms of H ok. And the constant is 𝜀0 and μ0 can be combined to yield the 

vacuum speed of light that is c equals 1 over square root of 𝜀0 μ0 okay and the result is an 

equation that entirely depends on H(r) okay. 

 

 So, you can finally have the expression looking like this. So, which is curl of this parameter, 

which is 1 by 𝜀0 and then curl of H(r), okay? And that is equal to omega by c whole square 

H(r). So, this is the master equation and together with the divergence equation that is 

𝛻.𝐇(𝐫) equals 0, that tells us everything about the magnetic field. And the beauty of the 

system is that once you know everything about the magnetic field, you can find everything 

about the electric field also because they are correlated. 

 



 

 

 So, for a given structure εr we solve for the master equation to find out the modes of H(r) 

and its corresponding frequencies subject to the transversality requirement. So this is the 

equation, the master equation and this is the fourth Maxwell's equation that correlates the 

curl of H with E(r). So you can also find out from here what is E(r) in terms of curl of H and 

you can also find H(r) in terms of E(r). So this is how you can obtain one and then get the 

other. Now, using this process guarantees that electric field satisfied the transversatility 

requirement that is divergence of D is 0 because the divergence of a curl is always 0 right. 

 

 

 

 

 

 

 

 

 

 

 



 
 So, in this case what is understood that we do not require two transversatility constraint 

rather we can only impose one and that will give us one particular field and from that you 

can obtain the other field. So, now we will move on to you know formulate 

electromagnetism as an eigenvalue problem. So, the heart of the Maxwell's equation for 

harmonic mode in a dielectric medium can be written as this okay. So, this is nothing but a 

differential equation of H(r) okay and the content of this equation if you see that you are 

basically performing a series of operations on the magnetic field H(r) okay. And if H(r) is 

really and allowable electromagnetic mode, okay, the result that you are obtained on the 

right side is nothing but a constant times the original function H(r), okay. 

 

 So, what is the function here? You first take a curl, then you divide that curl by εr and then 

again you take the curl of that entire quantity. So, you are actually basing a lot of operations 

on the magnetic field. And at the end, what do you get? You are again getting that magnetic 

field function times a constant. So this kind of situation arises often in mathematical physics 

and these are called eigenvalue problem. So if the result of an operation on a function  is just 

the function itself multiplied by some constant, then that function is called an eigenfunction 

or eigenvector for that particular operator. 

 

 And the multiplicative constant that you see here is called an eigenvalue, right? 

 

 

 

 



 

 

 So assume that the left side of the  equation. So, this is the master equation. So, all these 

things if you if you you know assume that as an operator Θ cap which is acting on magnetic 

field okay then this master equation can be rewritten like this that you have a Maxwell 

operator that operates on magnetic field and gives you a constant times that same function. 

So, it looks pretty much like the eigenvalue problem. So, what is this Θ cap? This is basically 

the differential operator that takes the curl of magnetic field divides with you know εr and 

then again takes another curl okay. 

 

 So, this is this operator. So, curl of H is basically this sorry Θ cap H(r) is basically this. So, Θ 

cap is a linear operator. Now, the eigenvector, so H(r) is eigenvectors, okay, so which are 

basically the spatial patterns of the harmonic modes and (𝜔/𝑐)2 that you see here are 

basically proportional to the squared frequencies of those modes. So, 𝜔 is basically the 

frequency of the particular eigenmode.  

 

 

 

 

 

 

 



 

So, we can assume that the left side okay, so this we have already seen that this is typically 

how the you know Maxwell's equation or the master equation looks like more of a 

eigenvalue problem and we have also understood that this operator Maxwell operator theta 

cap is a linear operator and for any linear combination of the solution will again be a 

solution right. 

 

 So, we can actually assume that if 𝐇𝟏 (𝐫) and 𝐇𝟐 (𝐫) both are the solutions of this master 

equation with same frequency 𝜔 then a combination of that say 𝜶𝐇1(𝐫) + 𝜷𝐇2 (𝐫)  where 𝜶 

and 𝜷 are constant that is also a solution of the master equation. For example, given a 

certain mode profile  we can construct another legitimate mode profile with the same 

frequency by simply doubling the you know field strength everywhere. So, you can choose 𝜶 

equals 2. So, that will double up the magnetic field strength everywhere and that will also be 

a solution. So, for this region we consider two field patterns that differ only by an overall 

multiplier to be the same mode. 

 

  

 

 

 

 

 



So, we actually now consider those as same mode because they just only differ by a 

multiplying factor ok. So, the operator notation that you see here is pretty similar to that of 

quantum mechanics in which an eigenvalue function is basically obtained by operating on 

wave function with the Hamiltonian H cap. okay. So, you can see that in quantum mechanics 

and electrodynamics if you put them side by side this is the wave function okay or wave 

scalar potential okay. So, if you compare quantum mechanics and electrodynamics side by 

side you can see the field is expressed as this in quantum mechanics whether in 

electrodynamics we represent it by this which we have seen earlier. 

 
 So, the eigenvalue here eigenvalue problem here. looks like H cap 𝚿 equals E 𝚿 whereas in 

this case this is the eigenvalue problem. So, you have Θ cap H equals (𝜔/𝑐)2  into H. So, this 



kind of operator notation is very similar to that of quantum mechanics. So, we are basically 

an eigenvalue equation is obtained by operating on the wave function with the Hamiltonian 

here. 

 

 
 So, here  The key properties of the eigenfunctions of the Hamiltonian will be to have real 

eigenvalues okay, they will be orthogonal, they can be obtained by variational principle and 

they can be categorized by their symmetric properties. And all these properties also you 

know hold for the formulation of electrode magnetism right.So, now let us look into what it 

means for an operator to be an Hermitian. So, Θ cap which is the Maxwell's operator is a 

special type of linear operator which is known as a Hermitian operator. So, what is that 

Hermitian operator and what does it take for an operator to be Hermitian? So, this is the 

master equation. 

 

 So, for an Hermitian operator the inner product of two vector fields, so if you take 𝐅(𝐫) and 

𝐆(𝐫), their inner product can be written as this. So, it is a volume integral of one like F 

conjugate (r) times you know or dot G(r). So, now that a simple consequence of this 

definition will be that the inner product of (F,G) is nothing but (G,F) conjugate and that is 

true for any F and G. Now, if you take the inner product of a vector field with itself, so you 

can write (𝐅, 𝐅) which is always real and non-negative even if F is complex. So, in fact if F(r) 

is a harmonic mode of our electromagnetic system, we can always set that the inner product 

of F  with itself is 1 and by using our freedom to scale any mode by you know an overall 

multiplier. 

 

 So, this actually if you set this you can get that freedom of scaling any mode by a multiplier.  

 



 

So, given F′(r) where you know the inner product of 𝐅′  with itself is not 1 you can write F as 

F′ (r) divided by whatever is that value right. So, from the previous discussion we 

understand that F(r) is basically the same mode as  F′ (r) just that it differs only by overall 

multiplier. but now we have this inner product of F with itself is 1 that means F(r) is 

basically normalized. And normalized modes are very useful in formal arguments if 

however  if one is interested in the physical energy of the mode and not just its spatial 

profile, then the overall multiplier is also important. 

 

 

 

 

 

 

 

 

 

 

 

 



 
 Because normalized will not tell you exactly about the actual physical energy of that field, it 

will only show you the spatial profile. So, you need to know the overall multiplier to know 

the exact value of the physical fields. Next let us assume that an operator Ξ  cap, capital 

Ξ  cap is Hermitian. If the inner product of F with this ΞG is same as you know (ΞF,G), the 

inner product of this with this and that is true for any vector field F and G. That is it does not 

matter which function is operated upon before taking the inner product. 

 

 So, if you either like take the you operate the function on G. and then you take the inner 

product or you operate the function on F and you take the inner product, the inner product 

should come out to be same in that case you know you can say that function is Hermitian. 

So, obviously you can understand that not all operators are Hermitian. Now we have to 

show that the Maxwell's operator theta cap is Hermitian. So, in that case we perform an 

integration by parts twice. 

 

 So, you take this kind of you know F, Θ cap G. So, you write down the inner product ok. So, 

this is your Θ cap G right. And here you can actually use two identities, two vector identities. 

One is the divergence of this 𝛻. (F×G) can be written as you know curl of F dot product with 

G minus F dot product with curl of G okay. 

 

 So, here you will see that you are getting this kind of situation where you are getting curl of 

this parameter. So, you can actually use this vector identity and find out what it is. So, this 

can be written as curl of F times okay  So, you can actually obtain this from this one ok. And 

then integrating both sides and applying the divergence theorem you can finally figure out 

that integration of F dot curl of G will be same as you know integration of curl of F dot G ok 

plus a surface term. that term typically from the integral of curl of sorry from the integral of 

this term okay. 

 



 𝛻. (F×G) that surface term basically vanishes. So, you can actually write it in terms of this. 

So, which tells that you can operate (Θ cap on F and then G you take the inner product and 

that will result into the same. So, that establishes the fact that Θ cap the Maxwell operator is 

a Hermitian operator. So, just repeating this here telling or highlighting that we have 

performed integration by parts and neglect the surface term that involve the values of field 

at the boundary of integration. So, this is because in all cases of interest you can neglect the 

term because of two things. 

 
 So, one of these things will be true either the field will decay to 0 at large distance or the 

field is basically periodic in the region of integration. So, in these two cases you can you 

know neglect the surface term and that involves the value of the field at the boundaries of 

the integration. So, that establishes that Θ cap or the Maxwell operator is a Hermitian 

operator. right. So, now we look into the general properties of the harmonic modes. 

 

 

 

 

 

 

 

 



 
 So, having established that Θ cap is the Hermitian operator, it can be shown that the 

eigenvalues of Θ cap must be real numbers okay. Suppose H(r) the magnetic field okay or 

the spatial profile of the magnetic field is an eigenvector of Θ cap with eigenvalue of ω/c  

whole square okay. It means okay you can take the inner product of the master equation 

you can write like this okay and you are getting this eigenvalue and again this particular 

eigenvector. In short you can write in terms of Θ cap operator this is how it will look like. 

Now if you take inner product of H and this thing what you get you will get you know ω2/c2. 

 

 and inner product of H with itself ok. If you take the conjugate of this you will get conjugate 

of ω2/c2 conjugate and then you have the inner product of H with itself ok. So, because Θ cap 

is a Hermitian operator, so this can be written as this. So, it does not matter where you are 

applying the operator, the inner product remains same and here the function is basically H, 

okay. Both vector fields are basically same. So, additionally from the definition of the inner 

product, we also know that H and then (𝐇,Ξ ̂ cap 𝐇) will be equal to (Ξ cap 𝐇,𝐇) conjugate 

for any operator Ξ cap ok. 

 

 So, if you use these two information together you can write that 𝐇,Ξ ̂ cap 𝐇 conjugate will 

be equal to ω2/c2 conjugate and then the inner product of H with itself and this can be 

written as this ok. from here ok and that is simply ω2/c2 and inner product of H with itself. 

So, what we obtain from here is that ω2/c2 conjugate is basically ω2/c2 that means ω2 is 

basically ω2 conjugate that means ω2 is basically real. okay and then this inner product okay 

is very easy that when you set F equals G equals H in this particular equation okay you 

basically get this. Inner product of H with H ω/c whole square that can be written as this 

turns out to be now a  F and G are both equal and they are both H. 

 

 



 
 So, there are curl of H twice. So, you have curl of H whole square and this is how the 

equation looks like. So here since 𝜀(𝐫) is positive everywhere the integrand on the right side 

is also everywhere non-negative. So that means you can say that this operator Θ cap the 

Maxwell operator is basically a positive semi-definite. Therefore, all the eigenvalues 𝜔^2 

are basically non-negative and 𝜔 is also real.  

 

 

 

 



 

 

 

In addition, the hermicity of Θ cap forces any two harmonic modes 𝐇𝟏(𝐫) and 𝐇𝟏(𝐫)  with 

different frequencies 𝜔1 and 𝜔2 to have an inner product of 0. 

 So, let us consider two normalized modes like 𝐇𝟏(𝐫) and 𝐇𝟏(𝐫) and they are having 

frequency of 𝜔1 and 𝜔2 respectively. So, you can write 𝜔1 square okay inner product of H2 

and H1 equals c square H2 and then Θ cap H1 that will be same as c square okay Θ cap H2 

comma H1 and that can be written as 𝜔2 square H1. (H2 H1). So, if you take these two 

together okay you can write 𝜔12-𝜔22 and the inner product of H2 H1. Now 𝜔1 and 𝜔2 are not 0 

sorry 𝜔1 and 𝜔2 are not equal so this term will not be 0 that means this has to be 0 and this 

is 0 means you know H1 and H2 are basically orthogonal modes. 

 

 

 

 

 

 

 

 



 
 So, two harmonic modes with equal frequencies if they are equal then they need not be you 

know orthogonal. So, this term need not be orthogonal and we can say if the two modes are 

having same frequencies we can say that they are degenerate. So, now let us introduce the 

concept of orthogonality. For two real one dimensional functions if you take f(x) and g(x). 

they are orthogonal if you know you can write the inner product of f and g as integration 

f(x)dxg(x)dx equals 0. 

 

 So, in a sense the product fg must be negative at least as much as it is positive over the 

integral of interest and then only it can become 0 right. So,  For example, if you take familiar 

set of functions like f and x and you can write it as sin(𝑛𝜋𝑥/𝐿), they are all orthogonal in the 

interval from x equals 0 to x equals L.  So, you understand over the integral, some part of the 

function has to be positive, some part has to be negative and then only they can be, you 

know, the net integral can vanish. So note that each of this function has a different number 

of modes and the locations can be found from fn(x) equals 0 and remember not including 

the endpoints. 

 

 So in particular fn has 𝑛 − 1 nodes. So the product of any two different fn is positive  as 

often as it is negative. So, that you know the inner product vanishes. So, that is the whole 

idea of orthogonality fine.  

 

 

 

 



 

Now, let us look into how do we calculate electromagnetic energy and apply the variational 

principle. So, although the harmonic modes in a dielectric medium can be quite complicated, 

there is a simple way to understand some of their  qualitative features. 

 

 Roughly a mode tends to concentrate its electrical energy or electric field energy in the 

region of high dielectric constant while remaining orthogonal to the modes below it in 

frequency. You understand the orthogonality right. So, f(x) integration f(x) g(x) will be 0 

something like that ok. For mode it is slightly more complicated, but the idea is that though 

same. This useful, but somewhat vague notion can be expressed precisely through the 

electromagnetic variational theorem which is analogous to the variational principle of 

quantum mechanics. 

 

 In particular, the smallest eigenvalue which is 𝜔0
2/𝑐2 and thus the lowest frequency mode 

corresponds to the field pattern that minimizes the functional. So, you can define a 

functional like this 𝒰𝑓 (𝐻) where it is inner product of ((𝐇,Θ ̂𝐇)) and then inner product of 

divided by (𝐇,𝐇) that is the inner product ok. 

 

 

 

 

 

 



 

 

 So, if you consider 𝜔02/𝑐2 is the minimum of this functional over all conceivable field 

patterns H. okay which are subject to the transversality constraint that is 𝛻 ·𝐇 will be 0 

okay. The functional 𝒰f(H )is also called Rayleigh quotient and it appears in a similar 

variational theorem for any Hermitian operator. 

 

 So, we will basically refer to this 𝒰f as electromagnetic energy functional in order to stretch 

its analogy with the variational theorems in quantum and classical mechanics that 

minimizes a physical energy.  

 

 

 

 

 

 

 

 

 

 



 

 

So, to verify the claim that 𝒰f is basically minimized for the lowest frequency mode, let us 

consider how small variations in hr affect the energy functional. So, suppose that we 

perturb the magnetic field hr by adding a small amplitude function which is delta H(r) okay. 

what is the resulting small change 𝛿𝒰𝑓 in the energy functional? So, it should be 0 if the 

energy functional is really at minimum, thus an ordinary derivative of the function will 

vanish at the extremum. To find out, let us evaluate the energy functional at 𝐇+𝛿𝐇 and at H 

and then compute the difference  which is 𝛿𝒰𝑓. 

 

 

 

 

 

 

 

 

 

 

 



 

 So, evaluating the energy functional at 𝐇+𝛿𝐇 this is how the equation looks like and you 

also have the energy functional at H ok. So, the difference between these two is basically 

𝛿𝒰𝑓(H) ok which is this one. Now, if you ignore the terms higher than the first order in 𝛿(H). 

okay. So, you can write 𝛿𝒰𝑓 in terms of this which is 𝛿𝐇,𝐆 the inner product of this plus 𝐆, 

𝛿𝐇 the inner product of this by 2. 

 

 So, where 𝐆(H) can be defined as this one. So, it is basically 2 divided by the inner product 

of H and then you have that operator Θ cap with H and then the ratio of this times H.  

 

 

 

 

 

 

 

 

 

 

 



 

So, what is this? This G is basically interpreted as a gradient which is a rate of change of the 

functional 𝒰𝑓 with respect to H. So, it is written as 𝐆(H) right, 𝐆 as a function of H or you can 

say the gradient as a function of H. Now, at the at an at an extremum  𝛿𝒰𝑓 must vanish right 

that is how you find the minimum for all possible shifts of 𝛿H and that will show that the 

gradient is basically G equals 0. This implies that the parenthesis quantity here should be 0 

ok which is equivalent to saying that this is 0. 

 

 which is again telling us that H is basically an eigenvector of Θ cap. So, which is true that 

means 𝒰𝑓 is the functional is at an extremum if and only if H is an harmonic mode. So, more 

careful considerations will show us that the lowest frequency electromagnetic eigenmode  

H naught basically minimizes the energy functional 𝒰𝑓. So, the next lowest energy okay 𝜔 

eigen mode will minimize 𝒰𝑓. within the subspace of the function that are orthogonal to H0 

and so on. 

 

 

 

 

 

 

 

 



 
 So, the next one will be orthogonal to this particular mode profile. So, the energy functional 

must be distinguished from the physical energy which is stored in the electromagnetic field. 

if you take the time averaged physical energy that can be separated into the contribution 

coming from electric field and also coming from the magnetic field and you can write 𝒰E 

that is basically the energy time averaged physical energy. So, you can write in terms of the 

electric field. So, this is the contribution from electric field, this is the contribution coming 

from magnetic field. So, in a harmonic mode the physical energy is basically periodically 

exchanged between the electric field and the magnetic field. 

 

 So, you can show that this energy can be totally converted into magnetic energy and back 

and forth. So, 𝒰E is same as 𝒰H right. 

 

 

 

 

 

 

 

 

 



 

 So, the physical energy and the energy functional are related, but remember there is an 

important difference. The energy functional has fields. in both the numerator and the 

denominator and is therefore, independent of the field strength. 

 

 So, the physical energy is basically proportional to the square of the field strength. So, in 

other words multiplying the fields by a constant affects the physical energy, but it will not 

affect the energy functional because energy functional has got filled in both numerator and 

denominator. So, if we are interested in the physical energy, we must pay attention to the 

amplitude of our modes. But if we are only interested in the mode profile, then we might as 

well normalize our modes. There you know the actual amplitude will not be seen, but the 

mode profile will be recorded. The rate of energy transport which is given by the pointing 

vector S can be written as S equals half real of you know E conjugate cross product with H. 

 

 So this is how you obtain the pointing vector. So that actually tells you the direction of 

energy transport or energy flow. So, this is the time average flux of the electromagnetic 

energy in the direction of s per unit time and per unit area for a time harmonic field. So, we 

also sometimes refer to the component of S in a given direction as the light intensity. The 

ratio of the energy flux to the energy density defines the velocity of the energy transport 

right. Now towards the end of this lecture, we will discuss why we discuss everything in 

terms of magnetic field instead of electric field. 

 

 

 

 



 
 So, by now one should be asking this question that why we are always dealing with 

magnetic field instead of electric field. In the previous section, we reformulated the 

Maxwell's equation as an eigenvalue equation for the harmonic modes of magnetic field 

H(r). The idea was that for a given frequency, we could solve for H(r) and then determine 

what is E(r) by their correlation equations. But we could have equally well tried an 

alternative approach  for the electric field and determine the magnetic field later on. Now, 

why did not we choose that particular route? So, we will see that there are certain 

difficulties and because of which working with magnetic field is preferred. 

 

 So, one can also find the condition on the electric field to be like this from the Maxwell's 

equation ok. Therefore, there are operators on the both sides of these equations  and it is 

referred to as a generalized eigen problem. So, it is a simple matter to convert this into a 

ordinary eigen problem by dividing by 𝜀r, then the operator is no longer Hermitian. So, if we 

stick to the generalized eigen problem like here ok, where there are operators on both sides. 

However, then the simple theorem which are analogous to those of the previous sections 

can be developed because the two operators of the generalized eigenproblem one is curl of 

curl of this this one curl of curl and another one is 𝜀r. 

 

 They can be shown to be both Hermitian and positive semi-definite. So, in particular it can 

be shown that 𝜔 is real  and that the two solutions E1 and E2 with different frequencies 

satisfy an orthogonality relation something like E1 and then you have  𝜀E2 okay which will be 

0.  

 

 

 



 

So, for some analytical calculations such as you know derivation of the variational equation 

or the perturbation theory the electric field eigen problem is the most convenient starting 

point. However, it has one feature that turns out to be undesirable for numerical 

computation, which is the transversality constraint. So, if you look at the constraint here, it 

is 𝛻 · 𝜀𝐄  equals 0. 

 

 So, you see this transversality constraint depends on epsilon. So, we can restore a simpler 

transversality constraint by using D instead of E. So, it looks like 𝛻 · 𝐃  equals 0 that means 

you have to deal with you know the displacement field instead of the electric field. So, in this 

equation you can substitute you know 𝐃/𝜀0 𝜀  this term can replace your E and then you 

divide both sides by 𝜀 to keep the Hermitian operator and then you can actually obtain this 

kind of a. So, in this equation you are substituting For E, you are putting 𝐃/𝜀0 𝜀. 

 

 

 

 

 

 

 

 

 



 
 And then you are dividing both sides by 𝜀 to keep the operator Hermitian. And this above 

mentioned equation will yield this. So you can see this is perfectly valid formulation of the 

problem. But it is unnecessarily complicated because of the three factors of 1 by 𝜀r. that is 

getting into the picture as compared to a single factor which gets into the formulation of H 

or E alone. So, this is an extra mathematical burden and that is why for mathematical 

convenience people prefer to work on H form for the numerical calculations. 

 

 So, that is all for this lecture. We will start the discussion of scaling properties of Maxwell's 

equation in the next lecture. If you have any doubt or query regarding this lecture at any 

point of time, you can email me mentioning MOOC and photonic crystal on the email subject 

line and this is my email address. Thank you. 


