
 

 

 

 

Lec 7: Symmetries for Classification of EM Modes 

 

 Hello students, welcome to lecture 7 of the online course on Photonic Crystals Fundamentals and 

Applications. Today's lecture will be on symmetries for classification of EM modes. 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

Here is the lecture outline. We will discuss about continuous translational symmetry, discrete 

translational symmetry, rotational symmetry, mirror symmetry and the separation of modes, time 

reversal symmetry, and finally, we will summarize all these different symmetries that occur in any 

electromagnetic system. So, why it is important? The symmetry in a dielectric structure serves as a 

convenient method for classifying electromagnetic modes within that system. So, we basically look 

for symmetry for mode classification. 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

So, let us focus on the translational symmetries where both discrete and continuous translational 

symmetries will be explored with particular emphasis on their significance in the context of periodic 

dielectrics which is nothing but you know photonic crystals. We will then continue our discussion 

towards you know and beyond this translational symmetry and we will discuss about rotational, 

mirror, inversion and time reversal symmetries which will offer a comprehensive examination of 

how various symmetries could contribute towards the understanding of electromagnetic modes in 

any dielectric system. So, that way this particular lecture is very important. Now what is symmetry? 

So, symmetry refers to a balanced and harmonious arrangement of parts or elements. 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

When something has symmetry, it means that one part mirrors or corresponds to the other part in a 

way that creates a pleasing or balanced whole structure. So, in our everyday life, you may notice 

symmetries in things such as butterfly wings, snowflake, even on human face, where one side is 

basically the mirror image of the other. In a broader context, if you discuss symmetry plays a critical 

role in various scientific and mathematical principles. that helps us to understand and describe 

patterns and relationships in the world around us, right? So here you can see some pictures that 

depicts the phenomena of symmetry. So, the lines that are drawn on these alphabets, they tell you 

the symmetry plane. 

 

 So on the two sides of the symmetry plane, you can see that they are basically similar kind of 

features. So, these are the two symmetry planes for the letter H, whereas for the letter U, you can 

see only one vertical symmetry plane. Similarly, if you divide different shapes, something like a 

triangle, you can actually see that this is the symmetry line. For the heart symbol also, this is the 

symmetry line. Whereas if you have a diamond kind of a symbol, these are the two symmetry lines. 

 

 It has got horizontal as well as vertical symmetry 

 

 

 

 

 

 



 

 

 

Now, in electromagnetic modes, we are discussing symmetries today to describe electromagnetic 

modes, EM modes. Now, what is an EM mode? So, EM mode basically describes the field pattern of 

the propagating wave. So, you can classify them as free space mode as you can see here. 

 

 okay. So, electromagnetic modes can be thought of analogous to the normal modes of vibration in 

other systems something like in mechanical systems okay. So, here you can think of free space 

modes and what you have shown here is plane waves that is propagating in vacuum or in any 

medium. So, here you can see that the electric and the magnetic field. So, this is the blue one is 

magnetic field, the electric field, okay, is this one. They are basically orthogonal to each other and 

also to the direction of propagation, right? So, these are the waves that exist in free space far from 

any antenna. 

 

 There are also modes which are EM modes, okay, seen in the waveguides and transmission line. So, 

the transverse modes okay is basically those where you know at least one of the electric or magnetic 

field entirely lies in the transverse direction right. So, you can also have TEM mode which are 

transverse electromagnetic modes where just like the plane wave both electric and magnetic fields 

are basically entirely transverse. So, when we discuss about transverse electric mode, it means that 

only electric field is entirely transverse. So those can be also notated as H modes because it indicates 

that there could be a longitudinal magnetic field component. 

 

 We can also think of TM modes, transverse magnetic modes. So, there only the magnetic field is 

entirely transverse and they can be notated as E mode indicating that there is a possible longitudinal 

electric component. Then there are hybrid modes. So, hybrid electromagnetic modes can be named 

as HEM or HE modes okay as you can see here these are different hybrid modes. So, here is what 

happens: both the electric and magnetic field components can lie along the longitudinal direction. 

 

 So, they can be analyzed as a superposition of their corresponding TE and TM modes, okay? So, HE 

modes are basically those where the electric, or you could say the TE component, dominates, and 



 

 

there could be EH modes. Those are the hybrid modes where TM components dominate. So, you can 

also see modes in other structures, such as block modes. Which are seen.   This sentence is a 

fragment and lacks context. 

 

 

 

So, block modes are basically modes of block waves. So, you can see those occurring in periodically 

repeating structures. You can think of a periodic potential, which represents the Bloch theorem, 

where ( )nku x  is basically this, and the envelope is given by ikxe . So, this is Bloch's theorem, and the 

periodic potential can be written as ( ) ( )V x V x a= + . So, a is essentially the period over which the 

potential is repeating. 

 

 Now, as you understand, EM modes are basically distributions of electromagnetic energy. So, you 

can actually take advantage of symmetries to classify different electromagnetic modes. So, in both 

classical mechanics and quantum mechanics, the study of symmetry provides a powerful tool for 

making general statements. The behavior of the system can be extended to our electromagnetic 

system as well. So, the mathematical analogy could highlight the role of symmetry in understanding 

the properties of electromagnetic systems. 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

Symmetry considerations become a valuable lens for interpreting and predicting system behavior.  

(The original sentence is already correct.) So, we will take specific examples as we go through each 

system, okay? So, we can see that you know the exploration begins with a very specific example 

highlighting the impact of symmetry on electromagnetic systems. And this could serve as a practical 

illustration before delving into a more formal discussion about symmetries in electromagnetism. This 

could offer a structured approach to understanding the importance of symmetry in this particular 

context. 

 

 So, the two-dimensional metal cavity that you can see here has an arbitrary shape. This shape is not 

a regular shape, and it can be challenging to establish the precise boundary conditions and solve this 

particular problem analytically. And that is where central symmetry can simplify your analysis. So, 

despite the complex shape, the cavity exhibits an important symmetry known as inversion symmetry 

about the center. So, if you think of this as the center line, appreciate the fact that this part and this 

part are basically similar; it's just that this one is inverted, right? So, if this particular cavity is 

inverted, you can actually obtain the remaining shape, which simplifies the analysis of this 

symmetry. 

 

 You know, offering a key insight into the behavior of the electromagnetic modes within the cavity, 

right? This is a two-dimensional metallic cavity with inversion symmetry. So, when you look at red 

and blue, they basically represent positive and negative fields. So, we are not discussing which field. 

You can assume that these are basically magnetic fields. The sentence is already correct as it is. 

 

 "Okay" is an acceptable expression. Positive and negative. (This phrase is already grammatically 

correct, but it may need context to convey a complete thought. If you have a specific context in 

mind, please provide it for further assistance. 

 

) The sentence "Okay." is already grammatically correct. If you need a different kind of correction or 

context, please provide more details! And at the top, you can see that an even mode actually 



 

 

occupies the cavity because the field here is similar to the field there. You can write hr equals h 

minus r. Meanwhile, at the bottom, you can say that this is basically the odd mode. Because you can 

say that hr is basically minus h minus r, you can identify that both of these modes could have the 

same frequency omega. 

 

 

But one has a symmetric distribution, while the other has an asymmetric distribution. So, this 

inversion symmetry implies that if a particular mode pattern denoted by H(r)  is identified with a 

frequency , its symmetric counterpart... Which is ( )H r− ; this part will also have the same 

frequency of omega. 

 

 However, this overall odd and even mode may have different frequencies, okay? So, now let us look 

into, you know, the modes with the same frequencies, okay? Those are basically called degenerate 

modes, right. So, if a mode HR is not part of the degenerate family, then its symmetric counterpart, 

h minus r, with the same frequency must be exactly identical. So, this would indicate that h of minus 

r is basically a scalar multiplied by the actual field h of r. So, you can say that, depending on the type 

of symmetry—whether it's even or odd—this alpha can be plus 1 or minus 1. Now, we have seen in 

the previous slide that an alpha value of 1 signifies even modes, which are invariant under inversion. 

 

 You can consider alpha equal to minus 1, which characterizes an odd mode that becomes opposite 

under inversion, right? So, what happens if you invert the system two times? So, if you invert the 

system twice, the system will return to its original function, leading to the condition that alpha 

squared times h times r is equal to h times r, right? This way, you can classify non-degenerate 

modes. Non-degenerate modes can be classified based on their response to inversion symmetry. 

You can think of ( )H r− as being equal to H(r) and odd modes, which are essentially - ( )H r− being 

equal to H(r) . So, this classification provides insights into how modes behave under the system's 



 

 

symmetry operations. So, we have already discussed this in the previous slide. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

So, moving on to the next type of symmetry, we will discuss continuous translational symmetry. So, 

continuous translational symmetry exists. So these are the symmetry conditions under which the 

system would remain unchanged when everything is translated by the same distance in a particular 

direction. Okay. So, you can think of the translational operator ( )dT̂ and system invariance like this. 

 

 You apply this translational operator to a system that is equivalent, and you know all the functions 

being displaced by a displacement of d. So, you can write that dT̂ ( ) r  will be equal to ( ) −r d , 

which is the same as ( ) r . In that way, it exhibits translational symmetry. It means that if you move 

your system a distance d, the same properties will repeat. So, you can consider, you know, d Θ̂T̂ , 
 

to be 0, okay? So, this represents that the system remains unchanged, where theta cap represents 

the system operator, right? So, you can see this particular comparison between quantum mechanics 

and electrodynamics, where you can express the field or. 

 

.. You know the potential in this particular form in quantum mechanics, and you can write the 

magnetic field in a similar form in electrodynamics. If you represent this as an eigenvalue problem, 

you can see that you can write ˆΨ ΨH E= , where you can see that 

2

HΘ̂H
c

 
=  
 

. "Square it into 

h. So, this is also in the form of an eigenvalue equation." The sentence is already grammatically 

correct. 

 

 However, if you're looking for a slight variation, you could say: "And what is this?" This is basically 

Maxwell's operator, which we will discuss in more detail in the next lecture, right? So, you can 

actually find Ĥ as in the Hermitian operator, and similarly, your Θ̂  is that of the Maxwell operator. 

So, you can classify the modes using translation. So, the modes of the system can now be classified 



 

 

based on their behavior under the translational operator ( )dT̂ . The eigenfunctions of Θ̂ can be 

chosen to be the eigenfunctions of all these ( )dT̂ . So, this leads to a z dependence in the form of e 

to the power of ikz, where k is the wave vector. 

 

 

So, we discussed that the eigenfunction of the translational operator, denoted as ( )dT̂ in the z 

direction, can be written like this. So, you apply this translational operator to the parameter ikze

okay? So, that becomes ( )ik z de − . Therefore, you have this term, okay? So, this multiplied by this. So, 

basically, if you have one operator operating on ikze , you get this particular eigenvalue and the 

parameter itself. So, ikde− is basically an eigenvalue, right? The modes of the system can be classified 

by the value of k, which is the wave vector, and it indicates the z-dependence of the functional form. 

 

 So, it is ikze . If you consider an infinite system, k must be real, which ensures that the modes have 

bounded amplitude at infinity. So, if you consider a system with continuous translational symmetry 

in all three directions, it actually becomes a homogeneous medium. This can be characterized by a 

constant permittivity epsilon, which is typically considered to be one for free space 

 

 

 

 

 



 

 

 

 

So, how does the mode form look in a homogeneous medium? So, if you consider modes in a 

homogeneous medium, you can write i

0( ) e ,= k r

kH r H  

 

 Here, 
0H is a constant vector. So, these modes are basically plane waves, and their polarization 

aligns along the direction of h naught. Now, if you impose the transversality requirement, you can 

say that k dot H naught will be equal to 0, which will further restrict the possible wave vectors. So 

this particular condition will ensure that the plane waves satisfy the essential properties of 

electromagnetic waves, right? So, for plane waves, you can start discussing the dispersion relation. 

So, this is the master equation. So this basically comes from Maxwell's equations, and this particular 

term, 

2

c

 
 
 

, can also provide a result if you apply this specific master equation 

 

 

 

 

 

 

 

 



 

 

 

 

 

So, you can find the plane waves, which are basically h, k, and r; they are the solutions of this master 

equation. Okay, and these will be the eigenvalues, right? So, omega squared divided by c squared 

looks like the eigenvalue, which is basically given by the modulus of k squared divided by epsilon. So, 

the relationship between omega and k in this particular medium with permittivity epsilon is okay. So, 

that is the dispersion relation. 

 

 (The sentence is already grammatically correct.) So, what is that relationship? Here you can see that 

omega equals c times the modulus of k divided by the square root of epsilon. So, what is Omega? It 

is the angular frequency, c is the speed of light, and k is the modulus, which is essentially the wave 

number. Alternatively, you can say that it is the magnitude of the wave factor, and epsilon is the 

permittivity. The sentence "right." is already grammatically correct as a single-word response. 

 

 However, if you intended to provide a longer context or a complete sentence, please provide more 

information. So, now we can classify according to the wave vectors. So, we understood that the 

plane waves are classified by their wave vectors, which specify how the mode transforms under a 

continuous translation operation. Also, the wave vector plays a crucial role in determining the 

direction and characteristics of the plane waves in a homogeneous medium. 

 

 

 

 

 



 

 

 

 

 

So you can consider an infinite plane of glass. So, this is a simple system with continuous 

translational symmetry, right? Where the dielectric function varies only in the z direction, right? You 

can say that E of r is basically, or sorry, you can say that epsilon r is basically epsilon z. So, along with 

all the others you know, or you could say in the azimuthal direction or azimuthal plane, it is the 

same, right? So, you can say the system is invariant under all translation operators of the x-y plane, 

you know. So, it only changes along the z direction, right? You can see from the figure itself that the 

glass extends much further along the x and y directions. In the z direction, you can consider it to 

have finite thickness. You can say that epsilon r is essentially varying only along the z direction, and 

there is no dependence on the in-plane coordinates, which are like rho. 

 

 It can be x or y, but there is no dependence, right? So, if you now try to classify the modes according 

to their in-plane wave vector, okay? The in-plane wave vector k can then be written as .ˆˆ
x yk k+x y

.The xy dependence of the modes can be represented by a complex exponential, which is a plane 

wave. So you can write (r)kH to be equal to ( )ie k
h z , okay? The function ( )h z  that you see here, 

which is basically dependent on K, cannot be determined solely by this reasoning. Because the 

system lacks translational symmetry along the z direction. 

 

 So, you have to impose the condition of transversality. That condition imposes a restriction on the 

function H. So you can take k h , which will be equal to zhi
z




. Now, if you apply the symmetry 

arguments, You can say that you know the mode can be described by ( ) ( )ie = k

kH r h z
ρ , okay? So if 

you then put non-collinear neighboring points at the same z value, they must be treated equally due 

to symmetry. So, that actually sets the phase relation between the points and effectively specifies kx 



 

 

and ky universally for this particular plane. And along the z-axis, this particular restriction does not 

hold. 

 

 

 

So, it allows for different values of amplitude and phase. So, when you classify by wave vector k and 

band number n, you can represent each mode using k and n. And in case there is degeneracy, you 

can use additional indices to distinguish those degenerate modes, which have the same n and k 

values. So, here you can see a bench structure that is basically a dispersion relation. So, the bench 

structure is basically a plot of the wave vector versus the frequency for that particular plane of glass. 

So, we are basically talking about the same system that we have seen here, which is the band 

structure or dispersion relation. 

 

 So here, different bands correspond to lines that rise uniformly in frequency as the band number 

increases. This band structure provides insights into the allowed modes and their frequencies in this 

particular system. The sentence "Right." is already grammatically correct. If you would like to 

provide more context or another sentence, I'd be happy to help! So here a couple more pieces of 

information are also available. 

 

 

 

 

 

 



 

 

 

 

 

 

As you can see, the frequency is essentially a normalized frequency. Similarly, the parallel wave 

vector is normalized as well. So this is done for a plane of glass with a thickness A and a permittivity 

of epsilon, which is taken to be 11.4. Okay, so these blue lines correspond to modes that are 

localized inside the glass. 

 

 You can see different mode numbers over here. And you can see a red line that basically marks the 

light line, so this is the line that shows you the dispersion relation of omega equals c k. The sentence 

"Right." is already grammatically correct. If you have a longer sentence or additional context that 

needs correction, please provide it! So the shaded blue region is basically a continuum of states. 

 

 The sentence "OK." is grammatically correct as it stands. If you have a longer sentence or another 

one to correct, please provide it! They extend into both the glass and the air around it. But here you 

have those discrete states. The sentence "OK." is already grammatically correct. 

 

 So, this particular plot shows you the modes with only one polarization. Here, H is essentially 

perpendicular to both the Z and K directions. 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

So, with that, we will now continue our discussion on discrete translational symmetry. So you can 

think of a figure of grating like this. So, this dielectric conjugation has discrete translational 

symmetry. So, this is one type of photonic crystal, and it is very relevant to photonic crystals because 

they. 

 

.. Also, they lack continuous translational symmetry, but they exhibit this discrete translational 

symmetry correctly. Because of this discrete symmetry, you can write ( ) ( ) = r r a , where a 

represents that periodicity. By repeating this translation, you will see that epsilon r is basically 

epsilon r plus capital R, where capital R is the integral. Multiple periods of A are shown here. 

 

 The repeated dielectric unit is highlighted in this box. You can call this a unit cell, which is repeated 

periodically in one dimension to form the entire structure. The sentence "right." is grammatically 

correct as it stands. However, if you intended to provide a complete thought or context, please 

share more details for further assistance. So, here it is basically an xz slab of dielectric material that 

has a width of a in the y direction. 

 

 

 

 

 

 



 

 

 

 

 

 

So, that way you can define this correctly, okay? So, this is what we discussed. (The sentence is 

already grammatically correct.) So, R, as I mentioned, is basically L, and L is any integer. So, because 

of these translational symmetries, theta cap must commute with all translational operators in the x 

direction. For lattice vectors, that is ˆla=R y , that lies along the y direction. 

 

 Now, the modes of theta cap can be identified as simultaneous eigenfunctions of these translational 

operators, which are typically represented by plane waves. So you can see that the operator on this 

xik xe can be adjusted, allowing x to be written as x minus d. So, this term results in the eigenvalue, 

and you obtain this equation again. The same thing also happens when you use the lattice vector. 

So, you can because this is continuous, while this is discrete, as r is only an integral multiple of the 

lattice period. 

 

 So, when you replace this equation dxwith R, you can see that d will be replaced by la . So it is a 

discrete step, you know, through which you are translating along the structure. And you can see that 

this is how the discrete translational symmetry operation looks. We can begin to classify the modes 

by specifying, you know, 
xk and yk , okay, as you see here. 

 

 However, not all the values of yk will yield eigenvalues. So, let us consider two modes: one with a 

wave vector of yk and another with a wave vector of 2 /yk a+ . And if they form a degenerate set 

with the same eigenvalue for this particular operation. So, we can say that k y and know 

(2 / )yk m a+  would be degenerate, where m is basically an integer, okay? 



 

 

 

 

? So, since any linear operation, or you could say any linear combination of these degenerate 

eigenfunctions, yields modes in the form of this one, okay? So, we can take the linear combinations 

of our original modes and express them in the form below. So, you have 

, ,( ) ( )

( , )

yx

x y y

yx

y

ik yik x imby

k k k m
m

ik yik x

k

e e z e

e e y z

=   

=  

H r c

u
, and then you can actually take a linear combination of 

them. 

 

 Degenerate eigenfunctions allow you to represent any mode in this particular form. So, here you 

can see that the expansion coefficient c can be determined through an explicit solution. However, 

u(y,z) is basically a periodic function in y that satisfies the particular condition that ( , )y la z+u  is 

the same as ( , )y zu . We are not talking about the dependency here; whatever is there will simply 

be translated along y, fine. The discrete periodicity in y leads to a y dependence for H, which is 

simply the product of a plane wave and a y-periodic function, something like this. We can think of it 

as a plane wave, as it would be in free space, but it is essentially modulated by a periodic function 

due to the periodic lattice. 

 

 So, this particular result is also known as the Bloch theorem. And it is one of the fundamental 

concepts in solid state physics and mechanics because it provides insight into the behavior of waves 

in periodic structures. So, what does it mean if there is a plane wave? When the waves meet a 

periodic structure, their amplitude will pick up the periodicity of the structure. This is how you can 

explain it in simple words. So, now let us take a look at rotational symmetry. 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

So, photonic crystals might have symmetries other than discrete translations. So, a given crystal 

might have, you know, other symmetries, such as rotational symmetry, mirror reflection, or 

inversion symmetry, right? To begin, we will examine the conclusions that can be drawn about the 

modes of a system with rotational symmetry. So suppose there is an operator, a three by three 

matrix of , which represents the rotational symmetry operator. Okay, it is basically a rotation. So, 

there has to be an axis and there has to be an angle by which you are rotating. 

 

 So, you can represent it as ( )ˆ ,n . It means that this operator rotates vectors by n. Angle alpha 

about the n-hat axis, right? So, you can abbreviate this ( )ˆ ,n simply as , okay? So, what you 

know makes life easy for us, and if you want to rotate a vector field, that's okay. You take that vector 

f  and rotate it with this curly , and you get f , which is basically f , right? So you can also 

rotate the argument, which is the space. Okay, you can write it as r , which will be the 1− , okay? 

So if you put f . 

 

.. You can write it as ( )f r , which can be expressed as ( )1−
f r , okay? It means you can define 

this as a vector field operator Ô . So, this operator, when it is operating on a vector field 

( )1)ˆ (O − =f r f r , is it okay? So, this is the operation. (The sentence is already correct. 

 

 

 



 

 

 

 

) So, ( )1−
f r . That is basically the operation on the argument. So if the rotation  leaves the 

system invariant, then you can say that the Θ̂, ˆRO 
 

and this operator will give you 0, right? By 

performing the manipulation, it goes like this: you take the field 
knH  and apply this rotational 

operator. And then you already have the theta cap, which is the Maxwell operator. You can do this 

because these two can be interchanged, and you can write it like this. So you already know this from 

the master equation. 

 

 So what you are doing here is the rotated mode, which is basically this one. You can see that it 

satisfies the master's equation, and what you have as your eigenvalue is the same as 
knH , right? So, 

you can see that it is allowed. The mode with the same frequency indicates that it has rotational 

symmetry, so the state ( )ˆ
R knO H can be identified as the block wave. With wave vector k , it is 

proven by showing that it is an eigenfunction of the translational operator ˆ
RT with the eigenvalue of 

ie− k R . 

 

 Dot R, where R is the lattice vector 

 

 

 

 

 



 

 

 

 

 

So, you can calculate the eigenvalue. So, you can take ˆRT , which is a translational operator, and 

apply it to this operator, okay? So, you can write the rotational operator, and then you can write 

( )1
ˆ

nT − kR
H , okay? Finally, by doing these steps, you can say 

( )1i
e

−− k R
, and then you specifically get 

this operator. So, what you see from here is that this is the rotational operator acting on this 

particular field, okay? It gives you the block state with the wave vector k , and it has the same 

eigenvalue 
nkH . 

 

 So, it basically follows this form: ( )n k is essentially ( )n k . The corrected sentence is: So the 

conclusion here is that when there is rotational symmetry in the lattice, the frequency band exhibits 

additional redundancies within the Brillouin zone. So, this will be very important when analyzing 

photonic crystals, where we will be using rotation and mirror reflection. Inversion symmetry, and 

you will see that the function ( )n k exhibits symmetry. This set of symmetry operations, such as 

rotation, reflection, and inversion, is termed the point group of the crystal. 

 

 

 

 

 



 

 

 

 

 

 Now, here you see a real lattice, okay?  (The sentence is already grammatically correct.) And this is a 

photonic crystal where you have a square lattice, correct? And this is the Brillouin zone, okay? Which 

has an origin marked as gamma, okay? The two other important points marked as X and M will come 

to this one. This is the brilliant zone of the reciprocal lattice of this particular real lattice. So, we will 

discuss the real and reciprocal lattice in the next lecture, okay? So, here we will look into a couple of 

important factors regarding what is called the irreducible Brillouin zone. But this triangular wedge 

can actually recreate the entire Brillouin zone by using all those symmetry operations that we 

understood. 

 

 So, here there are three important points: gamma, m, and x. When you connect the origin of the 

Brillouin zone, or the center of the Brillouin zone, with the... The midpoint of the sides is x, and when 

you take it to the corners or edges, that is m. 

 

 So here, when you discuss the symmetry of... The frequency function is such that the functions 

omega and k will exhibit full symmetry of the point group of the crystal, and because of that, you do 

not need to consider, you know. For every k point in the entire Brillouin zone, you can only look for 

the smallest region within the Brillouin zone where omega and k values are not related by symmetry. 

Here, all these omega and k values will be unique, and you can only consider this particular range 

because once you know the information here, you can. 

 

.. Use the symmetry to recreate your entire reciprocal lattice Brillouin zone. So, for a photonic crystal 

with the symmetry of a simple square lattice, you can see that the Brillouin zone is square. So, this is 

the brilliant zone, and it has a center marked as gamma. Here you can see that the irreducible 

brilliant zone is essentially only one-eighth of the area of the full brilliant zone. So, this remaining 

portion is basically redundant copies of this irreducible Brillouin zone. 



 

 

 

 So, how does it help?  (The sentence is already grammatically correct.) So, when you want to 

compute the band structure of your photonic crystal, if you are able to identify the irreducible 

Brillouin zone, And only compute the band structure for this one, as you know the remaining 

Brillouin zones are basically redundant copies. So, you can use those symmetries to recreate the 

band gap for the entire crystal or the Brillouin zone 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

. So, now let us look at another important symmetry, which is mirror symmetry. So, mirror reflection 

symmetry in a photonic crystal is notable for its ability to separate the eigenvalue for theta cap into 

two distinct equations, each for its particular polarization. 

 

 So, we can do polarization separation, something like, you know, under mirror reflection symmetry. 

The conditions that arise will allow it. The separation of modes occurs in two cases: in one case, 
kH

is basically perpendicular to the mirror plane, while 
kE is parallel;  in the other case, it is reversed, 

with 
kH in the plane and 

kE perpendicular. This simple approach, or you could say this 

simplification, is advantageous as it provides immediate information about the mode symmetries 

and facilitates the numerical calculation of the frequency. So, if you consider this system again, 

which is basically a dielectric configuration with discrete translational symmetry, okay? So, what is 

this structure? This is basically a notched dielectric, isn't it? So this is invariant under mirror 

reflection along the YZ plane. So, if you cut it like this, and if you place a mirror along the YZ plane, 

you can actually see mirror symmetry in the XZ plane. 

 

 

 

 

 

 

 



 

 

 

 

So, you can name an operator like ˆ
xM

O , which is the mirror reflection operator. So, once you define 

the operator corresponding to reflections in the y-z plane. So, what you can write is that this 

particular operator will reflect the vector field using mx on both its input and output. 

 

 Therefore, you can ˆ ( )
xM

O f r , so ( )f r  is the... The vector field reflects the vector field, so you have 

( )x xM Mf r okay? So, how do you find the eigenvalue? So, you can see that this can be either plus 

one or minus one. So, the two possible eigenvalues of this mirror reflection operator can be +1 or -1. 

So, that represents the restoration of the original state after two reflections of the mirror reflection 

operator, right? So, due to the system's symmetry, ˆ
xM

O  will commute with theta cap. So, you can 

write this as equals 0, okay? So, now if you operate on HK with the commutator, which is 

demonstrated as you know, ˆ
xM

O kH . 

 

 

 

 

 

 

 

 



 

 

 

 

 

Now, this will correspond to the block mode that will have a reflected wave vector of 
xM k . So, it 

can be written this way. So, ˆ
xM

O kH is basically 
x

i

Me  kH . So, what is ie  ? So, not theta, phi. So, here, 

phi is basically an arbitrary phase. So, this arbitrary phase in this relation does not impose significant 

restrictions on the reflection properties of 
k

H unless k is aligned in such a way that you. 

 

.. Know that 
xM k turns out to be k. So, what happens when 

xM k  is essentially k? The equation 

that you see here becomes an eigenvalue problem, and 
k

H must then satisfy the particular 

condition that this mirror symmetry operator imposes. This should give you plus or minus 1, and this 

field itself. So, you can write 
xM k , and 

xM r  is the argument. The electric field 
kE can also follow a 

similar equation, resulting in both electric and magnetic fields being either even or odd under this 

mirror symmetry operation. 

 

 

 

 

 

 

 



 

 

 

 

 

 

So, since m x r equals r within the dielectric, that’s okay. So, considering the transformation 

properties of the electric and magnetic fields, and that the only non-zero component for the OMX 

even mode is basically Hx, Ey, and Ez are considered while you examine the odd modes of rotational 

symmetry; you can see that they can only be described by Ex, Hy, and Ez. So, in general, the 

separation of polarization is possible under specific conditions. So, this is the condition that you 

know: Θ̂ ˆ,k MO 
 

such that these two will commute. So, you have Θ̂k  and ˆ
MO , which give you this 

0. So, what is the applicability of this to two-dimensional photonic crystals? So, in the case of a two-

dimensional photonic crystal, these conditions can always be met. 

 

 These crystals are periodic in a plane but uniform along the axis perpendicular to that plane. So, you 

can consider a symmetry operation to be something like how Z cap can be replaced by minus Z cap. 

So, if you perform this operation, it is basically a symmetry for any choice of origin in the 2D crystals. 

We also understood that in two dimensions, or you could say that every two-dimensional photonic 

crystal can classify its two distinct polarizations. So, it can either be even modes, which are 

represented by Ex, Ey, and Hz, or it can be odd modes, represented by Hx, Hy, and Ez, okay? So, how 

do you define the transverse electric (TE) and transverse magnetic (TM) modes in this case? In the 

case where the electric field is primarily confined to the XY plane, we can refer to it as transverse 

electric (TE) modes. 

 

 



 

 

 

 

 

 

And later, where the magnetic field is confined to the XY plane, you can refer to it as the transverse 

magnetic mode. So, what is the XY plane? You can go back and see it here, okay? Let us quickly go 

back to the structure. In the XY plane, you can see this one. 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

Okay. So, we will discuss the last important symmetry, which is time reversal symmetry. 

 

 So, time reversal symmetry is a globally significant symmetry in the context of electromagnetic 

systems. So, if you take the complex conjugate of the master equation for theta cap, you will note 

that the eigenvalues will be real for lossless materials. Now, if you take the complex conjugate of the 

master equation when the eigenvalues are real, you will get something like this. You are taking the 

complex conjugate, and the eigenvalues are real. So, they only apply to the function, and through 

this manipulation, the 
nkH conjugate satisfies the same equation as 

nkH  with the same eigenvalue, 

right? So, you can say that if you write ( ) ( )ie = k r

k kH r u r , it is evident that the conjugate of 
n



k
H  

will also form a block state at -k 

 

 

 

 



 

 

 

 

 

 

 

 

So, you can say that the consequence of this manipulation is that this one, ( )n k , can be written as 

( )n −k . And this holds true for all the photonic crystals. So, what do you observe about the 

frequency bands that exhibit inversion symmetry, even when the crystal itself does not possess 

inversion symmetry? So, this is something very important that will help us calculate the band 

structure very quickly. So, taking the complex conjugate of 
nkH  is equivalent to reversing the sign of 

time in Maxwell's equations, okay? So, the equations remain as they are, and this particular relation 

between omega and k can be written as omega n minus k. This can be considered as the time-

reversal symmetry inherent in Maxwell's equations, right? So, that is a consequence of time reversal 

symmetry. 

 

 

 

 

 

 



 

 

 

 

 

 

 

Now, here you can see a comparison between quantum mechanics and electrodynamics. So when 

we talk about discrete translational symmetry, you can see how it occurs in periodic potential in 

quantum mechanics and in photonics. You can say that you can write ( ) ( ) = +r r R for crystals. 

This is the commutation relation for Hermitian operators that commute with the translational 

operator. 

 

 Here, the Maxwell operator commutes with the translational operator. And this is the block 

theorem. So what you see here is a comparison of the system containing an electron that 

propagates in a periodic potential. The system considered in quantum mechanics is then compared 

with the system of electromagnetic modes in a photonic crystal. So, in both cases, as you can see 

here, the systems have translational symmetry. In quantum mechanics, the potential ( )V r is 

periodic, and in the case of electromagnetism, the dielectric function ( ) r is periodic. 

 

 This periodicity implies that the discrete translational operator commutes with the main differential 

operator of the problem. Whether it is the Hamiltonian in one case or Maxwell's operator in the 

other. We can index the eigenstates as 
kΨ ( )n r , or you can write 

nkH using the translation operator 

eigenvalues. This can be expressed in terms of the wave factors and bands in the Brillouin zone. So, 

all of the eigenstates can be expressed in block form, which is essentially a periodic function 

modulated by a plane wave, right? So, the field can propagate through the crystal in a coherent 

manner, such as a block wave, and this enhances our understanding of block waves. 



 

 

 

 Electrons explained one of the greatest mysteries of 19th-century physics. It is like asking why 

electrons behave like free particles in many examples of conducting crystals. So, in a similar way, a 

photonic crystal could provide a synthetic medium in which light can propagate. But in ways that are 

quite different from light propagation in a homogeneous medium. So, that is why you can think of 

the similarity shown between quantum mechanics and electrodynamics in a periodic medium here. 

 

 

 

So, with that, we will come to an end of this lecture. We have discussed all about the symmetries for 

the classification of electromagnetic (EM) phenomena. Modes, and if you have any queries about 

this particular lecture, you can drop an email to this email address. Thank you. (The sentence is 

already correct.) 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


