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Hello,  welcome  to  another  module  in  this  massive  open  online  course.  So,  we  are

looking at various aspects of information theory and we have also defined the concept of

entropy correct and we have seen various properties of the entropy of the source which

based characterizes the average information or also the average uncertainty associated

with this source. Average information per symbol of a source or the average uncertainty

that is associated with this (Refer Time: 00:41). So, let us now look at an example to

understand this better.

(Refer Slide Time: 00:48)

So, I want to look at an example, an example for entropies, correct. So, let us consider a

binary source, binary source implies the source alphabet has 2 symbols - similar to 0 and

1 a digital. Source alphabet has 2 symbols. So, I can say S equals S naught and S 1 these

are the 2 symbols of the source, correct.



(Refer Slide Time: 01:51)

So, remember this is the source alphabets of the 2 symbols which you call the source

alphabet, this set is known as the source is not a source alphabet. Let probability of the

symbol S naught be P the naturally probability of symbol S 1 equals 1 minus P, alright.

(Refer Slide Time: 02:20)

So, therefore, the entropy H of S is well P naught or basically let me write it, let me

elaborate this that is probability of S naught log 2 the base 2, 1 over probability of S

naught plus probability of S 1 log to the base 2 1 over the probability of S 1 which is

basically nothing, but P times log to the base 2 1 over P plus 1 minus P log to the base 2



1 over 1 minus P. This is your H of S which is the entropy of the binary source and this

quantity, this quantity is also known as H of P this quantity P times log to the base 2 1

over P plus 1 minus P times log to the base 2 1 over 1 minus P this is also denoted by H

of P.

(Refer Slide Time: 03:40)

So, this is basically the entropy of the source or rather we can say entropy of a binary

source, entropy of the binary source.

And now you will also see the first thing that the first property. So, we have derived the

entropy of the binary source as P times log to the base 2 1 over P plus 1 minus P log to

the base 2 1 over 1 minus P. Now you will also realize that for the first property is that

you will see that H of P we have denoted this by H of P H of P is equal to H of 1 minus P.



(Refer Slide Time: 04:39)

So, you have H of 1 minus P naturally you can see H of 1 minus P is 1 minus P log to the

base 2 1 over 1 minus P plus 1 minus 1 minus P log to the base 2 1 over 1 minus 1 minus

P, which is again you can see 1 minus P log to the base 2 1 over 1 minus P plus 1 minus 1

minus P is P log to the base 2 1 over.

So, this is your, this is your quantity H of P. So, H of 1 minus P, so we have H of 1 minus

P equals H of P that is the property and this is natural because we have seen that it only

depends on the probabilities right it does not depend on the actual symbol. So, if we have

binary source with the probabilities given by P that is 1 of the symbols as probability P

the other as probability 1 minus P has a same information as were the first symbol as

probability 1 minus P and other symbol as probability P.



(Refer Slide Time: 06:32)

Because we said it only depends on the probability the combination of probabilities, it

does  not  depend  on  the  symbols  the  information  does  not  depend  on  the  symbols

themselves. Depends only on the probabilities with which they occur.

(Refer Slide Time: 07:40)

Now, also observe that limit P tending to 0 of H of P this is equal to well limit P tending

2 0 P log to the base 2 1 over P plus 1 minus P log to the base 2 1 over 1 minus P. Now as

P tends to 0 1 minus P this becomes 1, 1 over 1 minus P this becomes 1. So, this tends to

this is equal to well limit P tends to 0, of P log to the base 2 1 over P plus I can substitute



1. So, 1 log to the base 2 of 1 this quantity 0, we know we have previously derived that

this quantity limit P tends to 0 P log to the base 2 1 over P this is equal to 0. So, overall

this quantity equal to 0. So, limit P tending to 0 H of P is 0 we know. So, at P equal to 0.

So, limit P tends, as P tends to 0 H of P tends to 0, correct. So, we have limit P tends to

(Refer Time: 08:14).

(Refer Slide Time: 08:16)

Similarly we have H of P equals H of 1 minus P we use the property H of P equals H of 1

minus P which now from which it now follows that limit P tend to 1 correct. So, now, it

naturally follows that it naturally follows that limit P tending to 1 of H of P is also equal

to well this is equal to since H of P is H of 1 minus P equals limit P tending to 1 of H of 1

minus P equals limit P tending to 0 of H of P this is equal to 0.

So, because if P tends to if P tends to 1 correct if P tends to 1 then 1 minus P tends to 0.

So, which means that limit P tends to 1 H of P is also equal to 0. So, what you see is

something  very  interesting  when  either  P equal  to  0  or  P equal  to  1  that  is  if  the

probability of 0 is equal to 0 or the probability of 0 is equal to 1 let us look at these 2

scenarios.



(Refer Slide Time: 10:07)

So,  H P equal  to  0  implies  probability  of  S of  0,  probability  of  S  or  0  equal  to  0,

probability of S of 1 is equal to 1 which implies that source always generate symbol S 1.

Because probability of S of 0 equals 0, source always generates S 1. On the other hand if

P equal to 1 this implies probability of S of 0 equal to 1 probability S of 1 equal to 0 this

implies that source always generates, source always generates the symbol S 0.

So, in either of these 2 cases when the source always generates S 0 or source always

generates S 1 that is P equal to 0 or let us P equal to 0 or P equal to 1, the uncertainty is 0

because the source is always generating either S 0 or S 1. So, there is no information in

the source because we know the next symbol the source is always going to; is going to

generate is going to be either S 0 right, if P equal to 1 because with probability 1 it

generates S 0 if equal to 0 with probability 1 it generates S 1. So, there is no uncertainty.

The source is always generating either 1 symbol or the other and hence the information

right, since there is no since there is no uncertainty right, the information associated with

the source average the entropy the average information per symbol associated with the

source is 0. Since we know with certainty that the source is going to if P equal to 0 with

certainty  the  source  is  generating  S  1  if  P equal  to  1  with  certainty  the  source  is

generating S c.



(Refer Slide Time: 12:40)

Now, let us look at when does the maximum entropy occur, when does the maximum

average information per symbol occur for the source. So, in both these cases P equal to 0,

in both these cases there is no uncertainty, this implies no information or that information

content information content is 0. Implies, the average information per symbol is equal to

0.

(Refer Slide Time: 13:07)

Now consider again H of P equals P log to the base 2 1 over P plus 1 minus P log to the

base 2 1 over 1 minus P.



(Refer Slide Time: 14:12)

Now let  us  to  find  the  maximum let  us  differentiate  this  with  respect  to  P;  to  find

maximum let us, to find the maximum let us differentiate with respect to P. So, H prime

of P the derivative that is d over d P of H P well that is P log 2 to the base 1 minus that is

basically you can write it as d or d P of minus P log 2 log 2 the base 2 P minus 1 over P

minus 1 minus P log to the base 2 1 minus P.

(Refer Slide Time: 15:21)

When you differentiate it of course, derivative with respect to P is 1. So, this is minus log

to the base 2 P plus when you differentiate it with respect to the log 2 p. So, I am using



the chain rule minus P log to the base 2 of P that can be written as well I can write this as

log P to the base e that is the natural logarithm times log e to the base 2. So, that is minus

P times well log P to the base e if you differentiate it that becomes 1 over P times log e to

the base 2, correct.

Similarly this is minus derivative of 1 minus P is 1. So, 1 minus P is minus 1, so this

becomes plus log 2 to the base 1 minus p. And what we finally, left with is minus 1

minus P derivative of log to the base 2, 1 minus P is minus 1 over 1 minus P times log e

to the base 2 which is equal to well minus well that will become minus log 2 to the base

P minus log e to the base 2 plus log to the base 2, 1 minus P plus log to the base.

(Refer Slide Time: 16:59)

So, you cancel these and what we get is minus log 2 the base, minus log P to the base 2

plus log 1 minus P to the base 2. Now if you equate this to 0, equate to 0 to find, so

differentiate.



(Refer Slide Time: 17:53)

So, differentiate and equate to 0 to find maximum and this implies that basically log 2 to

the base 1 minus P over P equal to 0 which implies 1 minus P over P equal to 1 which

implies  1 minus P equals P which naturally  implies P equal to half.  So,  we get that

entropy is maximum for P equal to half. That is when both the symbols that is S naught

both the symbols S naught in S 1 of this binary source an equal probability then the

entropy is maximum.

(Refer Slide Time: 18:50)



So, we have entropy is maximum for probability S naught equals probability S 1 equals 1

half and you can also see that this is the maximum because if you differentiate it again H

double prime of P that will be well, H prime of P we have that is derivative of H prime of

P that is the derivative of well minus log to the base 2, minus log P to the base 2 plus log

1 minus P to the base 2 which is equal to if you take log e to the base 2 common, this

will be minus 1 over P minus 1 over 1 minus P.

(Refer Slide Time: 19:45)

So, this is minus log e to the base 2 1 over P plus 1 minus P which is clearly less than or

equal to 0, second derivative less than equal to 0 implies there is a maximum and this

quantity remember P is greater than equal to 0. 1 minus P is greater than equal to 0,

therefore, this quantity is less than equal because of the negative sign it is less than equal

to 0 implying that indeed at P equal to half there is a maximum the entropy reaches its

maximum.



(Refer Slide Time: 20:22)

And what is the entropy at P equal to half? H of P equal to half or rather H of half equals

half log to the base 2 1 over half that is 2 plus 1 minus P that is half log to the base 2 1

over 1 minus P that is 1 over half that is 2 log to the base 2 is log to the base 2 of 2 is 1.

So, this is simply half plus half equals 1; so H of half.

(Refer Slide Time: 21:33)

So if you observe this is something very interesting.  So, H of half  equal to 1 which

means this is 1 bit, 1 bit per symbol, this is 1 bit which means H of half equal to 1 this is



1 bit per symbol and we have already seen that H of 0 that is limit P tends to 0, P tends to

1 if we denote them by H of 0 and H of 1 they are 0, and it reaches maximum at P equal.

(Refer Slide Time: 22:06)

So, if you plot this. So, if you plot this entropy you will realize that it looks something

like; you will realize it looks something like this. So, this is on the x axis we have p, on

the y axis we have H of p. So, this is P equal to 0 this is P equal to 1 and we have this add

it starts at it reaches its maximum that is at half it is equal to 1. So, it starts from 0 goes

all the way up to 1 at P equal to half. So, it is something like this. It is not pointed in fact,

its derivative; its derivative at half is 0 which is what I am trying to show approximately.

So, this is how it looks like. So, at half it reaches its maximum that is maximum equal to

1 at P equal to half.

This implies that here this is in fact 1 bit per symbol correct. So, at all these points, for

instance if you look at this point this is less than 1 this implies it can be represented with

lower number of. So, we have 2 symbols 0 and 1. What this means is the average entropy

is less than 1 implies that it can be represented with less number of bits per symbol than

1. Of course,  when P equal  to half  it  implies that you need on an average 1 bit  per

symbol to represent this and when entropy is less than 1 for instance when P equal to 3

by 4 correct. Entropy is less than 1 you can see that it needs requires less than 1 bit per

symbol on an average to represent this all right and that is what we are going to see as

you progress to the rest of this course.



So, for instance less than 1 implies lower than 1 symbol can be represented using less

than. So, implies can be represented and this is what the encoding process does right, the

encoding  process  expected  to  do  is  take  this  source  symbols  and  come  up  with  an

efficient  code  conduct  with an  efficiency  stream write  as  information  bits  stream to

represent this using the minimum number of bits right take to binary symbols S naught

and  S 1  correct,  S  naught  and S  1  and come up with  an  information  bit  stream to

represent this efficiently using the lowest the least number of possible bits that is the

lowest possible  bits  in an average sense.  That is  the average number of bits  used to

represent each symbol must be the smallest and that is what we are going to this process

termed as coding or encoding. In fact, that is the theory regarding this is what we are

going to look at in detail as you go through the rest of the modules of this course.

So, basically that is what we have seen we have seen an interesting example of a binary

source with 2 symbols S naught an S 1 probabilities P and 1 minus P we have looked at

what happens at the extremes that is P equal to 0 P equal to 1 there is no uncertainty, the

information is 0, maximum information or entropy occurs at P equal to half.  And of

course, if you plot it, it looks like a nice concave function which rises starts from 0 at P

equal to 0 rises to 1 at P equal to half and falls down again to 0 at P equal to 1, all right.

So, will stop here and look at explorer other aspects, other properties study this behavior

of entropy further in a subsequent modules.

Thank you very much.


