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Hello,  welcome  to  another  module  in  this  massive  open  online  course.  So,  we  are

looking at the average code length for code and we were shown the fundamental bound,

were in the average code length is  lower bounded by the entropy of the source,  the

average code length. So, the entropy of the source is the lowest possible average code

length of any prefix free code that can be designed for a given source.

Now let us look at what are the optimal codeword lengths which can be use to approach

this minimum possible average code length all right.
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So, in this module what we would like to look at is would like to address the question of,

what are the optimal if I were to design such an codeword code with minimum average

code length minimum average, minimum average code length, what are the optimal code

lengths?  All  right,  and  the  idea  is  basically  in  order  to  approach,  in  order  to  over

approach lower bound which is of course, we have seen is given by the entropy H X of

the source. 
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So, we want to find the optimal set of lengths, optimal set of codeword lengths l 0 1 1 l

m minus 1 of course, now since we are designing the prefix free code remember this has

to satisfy the craft inequality. These codeword lengths have to satisfy, these codeword

lengths have to satisfy craft inequality. That is summation i equal to 0 to m minus 1 2 to

the power of minus l i has to be less than or equal to 1. So, we can formulate this to find

the optimal codeword lengths we can formulate this as an optimization problem, right?

We want to find the optimal value of any function we can formulated as an optimal. Here

now optimization the we would like to optimize the codeword length, the in particular

we would like to minimize this average code length all right.
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So, we can formulate this is an object optimization problem, subject to this constrain

there is a constrain remember a such prefix the lengths of any such prefix free code

design have to satisfy the craft inequality.

So, the craft inequality access the constraint all right. So, therefore, we will we will have

a constrained optimization problem for minimizing the average code length all right. So,

we can formulate this as a constrained. So, that is the key word here that is, this is the

constrained  optimization  problem.  And  what  is  the  optimization  problem?  The

optimization  problem  is  specifically  minimize  the  average  code  length  which  is

summation i equal to 0 to m minus 1 p i l i subject to the constraint which is the craft

inequality, i equal to 0 to m minus 1 2 to the power of minus l i less than or equal to 1.

This is known as the objective of the optimization problem, this is known as the, this is

known as the objective, this is known as the constraint.
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And now what we can do is this is a constraint optimization problem. So, we can use the

Lagrange, we can use the Lagrange multiplier, we can use the Lagrange multiplier frame

work, the Lagrange multiplier frame work. There also known as the KKT frame work the

Karush–Kuhn–Tucker  frame work  to  solve  a  constraint  optimization  problem which

basically use as a Lagrange multiplier.

So, basically we can use a Lagrange multiplier. Let us put it this way we can say rather

than Lagrange multiplier, you can use a Lagrange multiplier frame work to solve the

optimization problem above. And what is the Lagrange multiplier frame work? We form

a lagrangian with the objective the must be familiar with this from a basic course on

mathematics  or  even an advance  course on optimization.  So,  I  found the  lagrangian

which comprises of the objective summation p i l  i  plus lambda times the constraint

summation i equal to 0 to m minus 1 2 to the power of minus l i minus 1. Now this

lambda this is known as the Lagrange multiplier, the Lagrange multiplier, the Lagrange

lambda is known as the this is known as the Lagrange multiplier. Now what I am going

to do I am going to differentiate with respect to each p i ok.

So, what we are going to employee is from the KKT frame the Karush–Kuhn–Tucker

frame work, what we do is differentiate this way of the Lagrangian which comprises of

the  objective  plus  lambda  which  is  the  Lagrange  multiplier  times  the  constraint.

Remember this is your constraint. You have to have one Lagrange’s Lagrange multiplier



for  each  constraint,  we  have  only  one  constraint.  So,  we  have  a  single  Lagrange

multiplier and now we are differentiating with respect to each p i and set equal to 0. And

differently with respect to each p i and set equal to 0. Now when you differentiate with

respect to p i of course, you can say summation p i l i if you differentiate with respect to

p i you get l i plus.
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Now, when you differentiate lambda summation 2 to the power of minus l i that fix 2 to

the power of minus l i of course, if you differentiate any other 2 to the power of minus l j

with respect to l i that derivative is 0. Similarly, if you differentiate any other p j l j with

respect to l i the differentiate derivative is zero.

So, you were picking that particular i when you differentiating with respect to l i plus

lambda times derivative of 2 to the power of minus l i is 2 to the power of minus l i into

derivative of minus l i which is 1 times log that is log 2 to the base e or that is basically l

into log natural 2. That is basically the natural logarithm of 2 and this must be equal to 0

I am sorry, when you differentiate p i l i this is simply p i, differentiate p i l i with respect

to l i is equal to p i. So, this is equal to 0 which implies that of course, if you differentiate

here lambda into minus 1 minus lambda with respect to l i that derivative is 0. Because

lambda is Lagrange multiplier differentiated with respect to l i that derivative is 0. So, we

have this equation over here now we have solve this to obtain p i.



So, what we have is basically 2 to the power of minus l i if you look at that that is equal

to well or 2 to the power of minus l i is equal to p i divided by lambda log natural 2.

Which implies l i equals log to the base 2 of lambda l n 2 divided by p i. That is easy to

show. So, this is the optimal average length.
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Now, solving this lagrangian setting the derivate differentiating with respect to p i setting

equal to 0, we have obtained the optimal, optimal codeword length. What average length

optimal , but of course, we have to find Lagrange multiplier, we still have to find the

Lagrange multiplier  lambda,  still  have to  find lambda and we find  lambda from the

constraint. 
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To find lambda, We use the constraint that is summation i equal to 0 to m minus 1 2 to

the power of minus l i is equal to 1. Remember this is the craft in equality; this is the

constraint which is satisfied with equality, if we have a positive Lagrange multiplier. And

now you substitute this value of l i which is summation i equal to 0 to m minus 1 2 to the

power of minus of course, l i I substitute from let us call this equation has hash. So,

substitute. So, in this substitute l i from equation hash. So, that will be 2 to the power of

minus log to the base 2 lambda l n 2 divided by p i is equal to 1. Now 2 to the power of

minus log to the base 2 lambda l n 2 divided p, p i this is nothing but summation i equal

to 0 to m minus 1 this quantity is p i divided by lambda l n 2, which is equal to 1 now we

know summation p i is equal to 1 this implies simply that lambda l n 2 is equal to 1 ok.
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So,  that  is  the  equality  that  we have  using  the  constraint  and therefore,  this  finally,

substituting the value of this lambda l n 2 the optimal length which we can call as l i star

equals log to the base 2 lambda l n 2 which is 1 divided by p i. So, optimal codeword

length and this is interesting, the optimal codeword length what we have does derived is

the optimal codeword length that is, optimal codeword length which minimizes, which

minimizes the average code length.
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And  observe  that  l  i  star  equals  log  to  2  to  the  base  1  over  p  i  this  is  inversely

proportional, look at this. So, this is inversely proportional to p i which means the larger

the probability that is symbol which have a larger probability have to be represented with

lower  and lower codeword lengths.  Because  they  occur  more frequently  an  efficient

representation would be to represent them using code words which have the, which have

lower lengths.

So, the largest probability symbol naturally has to have the lowest code length, codeword

length for efficiency. And that is what there is a optimal length that is, what there is the

optimal lengths that we have derived using this paradigm that is the Lagrange multiplier

using the Lagrange multiplier the lagrangian that is KKT frame work. Using by solving

this constraint optimization problem, the optimal lengths that we have derived codeword

lengths that we have derived reflect this very fact. So, this implies this implies larger

probability, So this says that larger probability implies lower, larger probability implies

lower code. This is for efficient representation, this for in towards in efficient. And let me

aimed by giving your simple example.
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For example let us look at a Morse code one of the earliest and most popular code source

codes for the English alphabet used in the of course, everyone must be familiar with the

Morse code which is used in the telegraph and one of the most popular source code for

English  alphabet.  And  this  is  nothing  but  a  source  code,  correct?  One  of  the  most



popular, and if you look at the Morse code instead of zeros and ones see of 2 kinds of

symbols, you can think of them as zeros and ones you have a dot and you have a dash

rather than use. So, you have a dot. 
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So, you have a 2 bit. So, you have a binary code. So, you have a binary code. So, you

have dots and dashes. So, Morse code can be thought of binary code were each binary

code corresponded to the English alphabet and of course, the numbers all right. So, each

alphabet and each number is represented by using a series of sequence of dots and dashes

and you will see that in the Morse code the length of a codeword is roughly,
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Of course the Morse code was derived more than hundred years ago before information

theory was in practice, length of the codeword is roughly, let say approximately, one of

the  reasons  Morse  code  is  very  efficient  is  inversely  proportional  to  the  frequency,

correct? To the natural frequency of particular symbol. For example, if you can look at

the symbol T this is represented using dash. You can think of this as a one bit because T

occurs rather frequently in the English alphabets. Several alphabets use T for instants. In

fact, the word the uses as T, so many words. So, the word T occurs rather frequently and

therefore, it has a very compact representation, a single dash. 

Now, some of  the  alphabets  which  are  the  rather  in  frequently  for  instead  the  most

common one that you can think of is the alphabet Q if you look at Q therefore, has as

longer representation that is dash, dash, dot, dash. So, this is occurs in frequently implies

longer codeword. In fact, if you look at z that is also which also occurs infrequently that

is dash, dash, dot, dot. Again occurs in frequently.

Therefore, it has a longer codeword this is occurs, T occurs frequently implies shorter

codeword. So, that is the basic idea. So, even a code like the Morse code, which was

derived, which was of course, established which was designed hundreds of years ago for

and which. In fact, on the which In fact, from the back bone of the telegraphy system

was in fact based on this principle much before of course, the principles of information

theory was formalized that longer, which if we think about is also intuitive that is more



frequently occurring symbols have to be represented by code words having smaller lines,

right? And the less frequently that is the rather in frequent symbols can be represented

using a code words which have possibly longer lengths. And that is how one designs an

efficient code. And that same is verified by the optimization frame work that we derived

solution to the to the optimization problem for minimizing the average codeword length,

were  we  are  shown  that  to  the  lowest  average  codeword  length  is  achieved  using

codeword length l i which is in fact, which is a log which is given as the log to the base 2

1 over p i.

Of course, we have shown that using a constrained optimization frame work all, right?

Using the KKT frame work formulating the lagrangian using the lagrangian multiplier

the  Lagrange  multiplier  solving  this,  right?  Solving  the  lagrangian  to  obtained  the

optimal codeword lengths l i which is given by log to the base 2 1 over p i all right. So,

will stop here and in the subsequent models we look at schemes to design efficient codes

in order to achieve this lower bound all right.

Thank you very much.


