
Principles of Communication Systems - Part II
Prof. Aditya K. Jagannatham

Department of Electrical Engineering
Indian Institute of Technology, Kanpur

Lecture – 47
Huffman Code, Algorithm, Example, Average Code Length

Hello,  welcome to another  module  in this  massive open online course.  So,  we were

looking  at  various  aspects  of  source  coding  the  fundamental  bound.  On  the  lowest

possible average length of the source code for a given source and also we have seen the

mechanism by which  we can approach this  lower bound,  that  is  by coding symbols

across larger and larger block lengths all right.

So, in this module we look at a practical scheme when algorithm to construct an efficient

source code for a given source which is a very simple and elegant scheme termed as the

Huffman code. So, that is the algorithm we look at in this module.

(Refer Slide Time: 00:54)

So, we would like to understand more about the Huffman code which is a very popular

and efficient code. Or an algorithm to construct it is not a code, it is an very popular

algorithm to construct an efficient.



(Refer Slide Time: 01:16).

So, it is a very popular and simple algorithm to construct a prefix free code for a given

source  with  a  source  alphabet  and  a  certain  probability  distribution,  with  a  certain

probability  distribution  for  the  source,  with  a  certain  probability  distribution  for  the

source alphabet. In the Huffman code is the optimal code in the sense that it yields the

code with the shortest average length. Or the smallest average length for a source with

corresponding to that particular probability distribution. So, the Huffman code is very

efficient.

(Refer Slide Time: 02:58)



It is a very efficient code or rather a mechanism to construct a very efficient code and

yields the code with the shortest, this can be shown that it yields the code, yield is a code

with a shortest average length. In that sense it is the optimal code. So, it yields the code

with the shortest average length in that sense it is the optimal code.

(Refer Slide Time: 04:12)

And we will illustrate this with the aid of an example. So, let us illustrate this with the

aid of an example. Let us describe this with an aid of an example. Consider X symbols X

drawn from a source with alphabet s naught s 1, s 2, s 3, s 4. And the probabilities are the

probability of s naught equals 0.15 in the probability of s 1 equals 0.2, probability of s 2

equals 0.15, probability of s 3 equals 0.25 and probability s 4 equals 0.25. And you can

see that even before we start this is a valid probability distribution because sum of all

probabilities, the sum of all probabilities is equal to 1. Now to start with So, what we

want to do is basically we want to construct the optimal code that is a Huffman code is

we want to illustrate the procedure, to construct the Huffman code for this source with

this source alphabet and the probability distribution that is given ok.



(Refer Slide Time: 06:14)

So, that is what you want to illustrate all right. And, so we are interested in to construct

the Huffman code for this source.

(Refer Slide Time: 06:42)

To construct the Huffman code for the given source. Now the first step that is if we were

to write  this  in  steps for  clarity,  list  symbols  in decreasing  order  of,  list  symbols  in

decreasing order of probability. List the symbols in decreasing order of probability. So,

you can see that the probabilities are 0.5, 0.15, and 0.2. So, if I were to list the symbols

in decreasing order of probability, I can arrange them as well, s 3 and s 4 which have



probabilities let  me write that as much to the left as possible as we are going to see

shortly in that we are going to keep progressing towards a right So, s 1, s 1 s 2 s 0. So,

this  is  0.25,  s  4  probability  0.25,  s  1  probability  0.2,  s  2  which  has  the  next  lower

probability of course, s 2 and 0 have the lower probabilities which are 0.15 each ok.

Now, we are what we do is we fuse or combine 2 symbols with a lowest probabilities. So

now, if you look at this s 2 and s 0 have the lowest probabilities. These have the lowest

probabilities.  So, in the first in the next step, these have the lowest probabilities.  So,

therefore, what we do is we fuse or basically we combine this. So, we combine this. We

fuse this 2 assign a 0 to one branch let us to the top branch one to one branch, then net

probability becomes 0.3.

(Refer Slide Time: 09:20)

And. So, we fuse or combine this  2 symbols and add their  probabilities.  So, we are

taking  the  lowest  probability  symbols  fuse  or  basically  combine  them and add their

probabilities. So, in step number 2 what we are doing in step number 2 is we take the

symbols fuse combine or fuse the 2 symbols with the lowest probabilities. And we add

their  probabilities,  that  is  the  most  important  thing  we  add  their  corresponding

probabilities.

So, we are fusing these 2 symbols which have the lowest probabilities and then we are

corresponding adding, we are adding their corresponding probabilities. And so, to one of

the branches we are assigning 0, to the other branch we are assigning a 1. And if the



significance of that we are going to seeing slightly later. Now what we do, so we had

assigning a 0 to one branch assign a 1 to another branch. So, we assign 0 or 1 to the 2

branches.  And now what  we do,  now we have these  two.  So,  we have  the  original

symbols s 3 s 4 s 1 and this fused symbols which is s 2 and s 1.

Now we repeat the same step, now we go to step one, they is resulting symbols. So now,

you have to look at the effective symbols set that we have we have the infuse symbols s 3

s 4 s 1, that is infuse symbols at stage one and the fused symbols that is s 2 and s 0. Now

again reorder their probabilities fuse the symbols with a lowest probabilities, to branches

assign 0 to one branch, 1 to another branch. Proceed until all the symbols are fused in to

a one effective symbol. And naturally when you fuse all the symbols since you adding

their probabilities the total probability of the next few symbol remaining the end will be

1 that is where we stop this ok.

(Refer Slide Time: 12:36)

So, now step number 4 we reorder order the probabilities this is very simple reorder the

probabilities and start from step 2. So, reorder the probabilities start from step number 2

that  is  by  fusing  the  probabilities  corresponding  fusing  the  symbols  with  a  lowest

probabilities and adding their corresponding probabilities. Now if you look at this stage,

in this stage the probabilities that we have our 0.25, 0.25, 0.2 and the fuse symbol with

0.3. Now naturally this fused symbol with probability 0.3 will go to the top because, it

now has a highest probability by virtue of the addition of probability. So, that will go to



the top. So, that will go here, that will be 0.3 and the rest of the symbols for instance will

come down when you order them. So, s after that you have s 3 after that you have s 4

finally, you have s 1, which is 0.2.

Now, the lowest probability symbols are one their s 1 with probability 0.2 and s 4 with

probability  0.25 well,  you can either  choose s 4 or s 3 it  does not matter  both have

probability 0.2 five. So now, you fuse well, now you fuse a s 1 and s 4 assign 0 to 1

branch, 1 to another branch, it becomes 0.55, 0.45 the net probability.  So, that again

when you reorder it goes to the top. So, this is 0.45 and then you have 0.3 which will be

the next one and then you will have 0.25 which is s 3. Now the lowest probabilities are s

3 and s the lowest probabilities are 0.3 which corresponds to remember the fuse symbol s

2 and s 0 and of course, s 3 with 0.25. So now, you fuse these 2.3 and 0.25 assign 1 to

one branch 0 to one branch, 1 to another branch this becomes 0.55 you have 0.45 which

is another fused symbol and now when you fuse it becomes, and again you assign 0 to

one  branch,  1  to  another  branch  and  then  you  get  the  effective  fuse  symbol  this

completes the algorithm.

So, this is where all symbols fused with all symbols combined. So, the probability of

that, since we are adding all the probabilities in the final stage we will get a fusion of all

the symbols correct and the probability of that will be 1 all right. Since we are adding all

the  probably,  since  we  are  fuse  we  adding  all  the  probabilities  now.  So  now,  that

completes the process of constructing this Huffman tree.

So, this has completed if you can see the tree, and now to find the code you back track

along the tree. So, to find the code back track along the tree, back track along tree to each

alphabet or each symbol, correct? You back track along the tree to each symbol. For

instance, to find the code corresponding to let say symbol s naught well s naught will be

s naught remember s naught is going through 1 and then it is going through the top to 0.3

finally, 0.3 the branch 0.3 is assign 0 here and finally, it is going in to 0.55 which is

assigned another 0, so the code for s naught. So, the code for s naught will be, the code

for s naught will be 0, 0, 1 that is if you back track this find the path to. So, you start with

0, 0, 1. So, s naught corresponds to 0, 0, 1.

Let me repeat this procedure again if you trace the path from s naught to this root node,

you can see you start  with s  naught  the corresponding branch has 1 then the fusion



results in probability 0.3, 0.3 goes over here. Now in this stage where you are fusing 0.3

and 0.25, 0.3 is assign 0. Again it goes in to 0.55 and in this stage finally, when you are

fusing 0.55 and 0.45, 0.55 is assign 0.

So, now if you back track along this path to the path of 0, what you will have is 0, 0, 1.

Similarly if you back track along the path to path s 2, s 2 will be 0, 0, 0. So, basically

while back tracking right, looking at the path and looking at the bits on the path that

eventually leads to So, we have what we have doing is we are back tracking starting from

this effective symbol because probability 1. We are back tracking the symbol to back

tracking the route or back tracking the path along this tree this Huffman tree to each

symbol. And along the way we are collecting all the bits that we are observing on the

various branches. And that basically forms the code word for that particular symbol I

have to disc describe it in very simple topic.

Basically the sequence of bits along the paths starting from this effective towards fused

symbol towards each of these, towards each of this symbols in the alphabet all right. We

have seen s 0 is 0, 0, 1 s 2 is 0, 0, 0 and you can similarly formulate the list.

(Refer Slide Time: 19:58)

So, the final code Huffman code will be the Huffman code that has been finally, designed

is basically for s 0 we have 0, 0, 1 for s 1 we have 2 bits 1, 1. You can find this from the

tree for s 2 we have already seen we have 0, 0, 0. S 3 we have 0 1 and s 4 is represented



using the 2 bits 1 0 and you can observe. So, this is basically your Huffman code. And

you can observe that the 2 lowest probabilities.

(Refer Slide Time: 20:57)

What is interesting thing this is the property of the Huffman code, which is always true is

that  the  2  symbols  lowest  probability  symbols  have  code  word  lowest,  probability

symbols  have  code  word  of  code  words  of  equal  length.  So,  the  lowest  probability

symbols have code words of equal length.

So that is what is an interesting property of the Huffman code. The lowest probability 2

symbols with the lowest probabilities have equal lengths. And now what we are going to

do is, let us compute the average code length for this code word for the Huffman now.

Before that let us first verify that this is a prefix free code. And we know how to verify

that this is a prefix free code so, want to of course. So, let us check that this is a prefix

free code so, we have s naught.



(Refer Slide Time: 22:21).

So, let say 0 represents a top branch. Remember we can always verify prefix free code

using the binary tree representation, so 0, 0, 0 that gives s naught. 0, 0 I am sorry, 0, 0, 1

gives s naught, so 0, 0, 0 gives s 2. 0, 0, 1 gives s naught. 0 1 this gives s 3 and 1 0 this

gives s 4 and 1, 1 gives s 1.

(Refer Slide Time: 23:30)

So, this is a binary tree representation for the code that we have constructed. And observe

from this  binary tree that,  no code word or  no symbol,  no symbol  are  ancestor.  No

symbol is an ancestor of any other symbol that is no symbol lies along thus, that is no



symbol lies along the path to another symbol in this binary code tree which implies this

is a prefix free code. Or an instantaneous code which implies this is a prefix free code.

And we would like to calculate.

(Refer Slide Time: 24:35)

Now, what is average code length to calculate the average code length let us write this

table. So, we would like to calculate what is the average code length. So, to calculate the

average code length let us start with a table. So, this is your symbol s naught s 1 s 2 s 3 s

4 and the code. And the code corresponding code is s naught is 0, 0, 1 s 1 is 1, 1 s 2 is

well 0, 0, 0 s 3 is 0 1 and s 4 is 1 0. And which means the length that is also obvious s

naught is length 3 bits, s 1 is length 2 bits, s 2 has length 3 bits, s 3 has length 2 bits, s 4

has length 2 bits. And finally, let us light the probability of each we know what are the

probabilities of these different code words, what are the probabilities. So, the probability

of s naught is 0.15, probability of s 1 is 0.2, probability of s 2 is 0.15 s 3 and s 4 have

probabilities 0.25 each.



(Refer Slide Time: 26:24).

So, therefore, average length equals summation i equal to 0 to m minus 1 p i l i which in

this case would be 3 into 0.15 plus 0.2 in to 2 plus 0.15 into 3 plus 0.25 into 2 plus 0.25

into 2. Which if you calculate is basically 0.45 plus of course, point 4 plus 0.45 plus 0.5

plus 0.5 and you can clearly see this is basically 1, 1.4 plus 9 this equal to 2.3 bits per

symbol. That is your l bar for the Huffman code, this is the what we have just calculated

is basically your average length. So, this is the average length for the Huffman code.

(Refer Slide Time: 27:53)



So, this is the average length for the Huffman code. To see remember, to see how close

this is the lower bound of any such code, not just the Huffman code, but for any prefix

free code is given by the entropy. So, to see how close it is to the lower bound let us

calculate  the  entropy.  And  the  entropy  is  given  as  this  is  equal  to  2  symbols  with

probability point 0.5. So, twice into 0.15 log to the base 2 1 by 0.15 plus 0.2 one symbol

with probability 0.2 log to the base log to the base 2 1 over 0.2 plus twice into 0.25 into

log to the base 2 one over 0.25 which is equal to 2.2855, this is the lower bound from the

entropy. And you can see the Huffman code is tantalizingly close to this.

(Refer Slide Time: 29:19).

If you can look at l bar minus h X that is equal to 2.3 minus 2.2855 which is equal to you

know 0.0145, 0.0145 bits per symbol. So, the Huffman code is only 0.0145 bits per a

symbol from the lower bound which is given by the entropy. And therefore, the Huffman

code so, for this shows that even for this simple code. So, this shows that the Huffman

code is very efficient it is only 0.014 or approximately 0.015 bits from per symbol from

the lower from the lower bound. Further you can reduce now, remember to approach this

become arbitrary close to the lower bound one has to code over larger and larger block

lengths all right.

 So, by employing the Huffman code or this scheme for constructing the Huffman code

over larger and larger block lengths one can be, one can achieve an average code length

which is arbitrarily close, arbitrarily in the sense that is achieve an average code length



which is as close to this lower bound that is entropy as desired. So, by coding over larger

and larger block lengths achieve average code length that is arbitrarily close.

Achieve average code length that is arbitrary. So, by coding over larger and larger block

lengths  one can achieve an average code length that  is  arbitrarily  close to the lower

bound which is the entropy of source. So, basically in this module we have seen the

Huffman code which is an elegant and a very simple scheme to construct an optimal

code, all right and which is very close to the lower bound that is. So, we have illustrated

this using an example constructed an Hoffman code verified that it indeed gives a prefix

free code, all right we have seen the procedure in detail and also we have seen that the

average code length is fairly close to that given by the lower bound that is the entropy.

And one can further decrease the gap between the average code length and entropy by

using this procedure the Huffman code over larger and larger blocks lengths, as we have

seen on the previous modules that is once you code over larger and larger block lengths

one can achieve an average code length that is as close to the lower bound as desired. So,

we will stop here and look at other aspects in subsequent modules.

Thank you very much.


