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Hello and welcome to NPTEL mook on applied electromagnetics for engineers. In this module

we will calculate inductance one of the important circuit parameter for a couple of cases, while

doing so we will  also  be calculating  the  magnetic  fields  for  them.  So let  us  begin  by  first

understanding  what  is  inductance?  You  have  to  understand  that  inductance  is  a  concept

associated with magnetic flux that links to a particular conductor, this is one way of defining

inductance.

Another  way of defining inductance is  to actually  calculate  what  is  the amount  of magnetic

energy  stored  in  a  group  of  conductors  or  in  a  conductor,  and  then  based  on  that  define

inductance. We will not take that magnetic energy root, because it is little more complicated and

does not release server purpose. What we do instead is that we define inductance in terms of the

flux linkage associated with a particular circuit.

You notice that I am keeping the word links the very vague word, because I do not want to

specify mathematically or rigorously, because it is actually very difficult to do so. But most of

the times it should not cause us confusion, because intuition tells us what is this flux linkage and

how to define that flux linkage, how much flux linkage, the amount of flux linkage to a particular

conductor usually gathered by the induction okay.

Sometimes it so happens that a particular conductor might have more than now one flux linkage

associated with it, or sometimes you might have flux linkage coming from one source link and

one times,  another  source linking and two times,  and another  linking three times to a given

inductor. 
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So we say that if we consider, you know if we consider a conductor we say that one single flux

linkage exists okay, one single flux linkage exists when a single flux line, what is flux? Flux is

the magnetic flux density lines that we are talking about, so called B lines, you know for a simple

magnet you have seen those flux lines, so say N and S if you see these are all the field lines or

the flux lines that you can think off.

So we are talking about how much of these flux links to a particular conductor okay. So a single

flux linkage is said to exist in a particular conductor when a single flux line links as I said this

word is little vague at this point, but I will soon clarify that one. So when this single flux line

links to the conductor. As I said sometimes you might have a flux which we will denote this as ,ϕ

so you might have a certain circuit being linked with the flux 1.ϕ

And it might link at times n1, flux 2 might link the same circuit n2 times and so on. So you canϕ

actually think of the total flux linkage, and this total flux linkage is usually measured or it is

measured in webers okay. And this total flux linkage we denote it by this Λ it will be given by Σ

ni i okay over all possible values of i. The assumption that we have made here when we wroteϕ

n1 1 + n2 2 seems to be that all of these nis are integer okay.ϕ ϕ

It need not be so; in fact you might have a flux linking not completely to a circuit,  but only

partially okay. This concept of partial flux linkage is very important and it will come up when we



calculate the inductance of in a coaxial cable for example. Therefore, one has to generalize and

allow for fractional flux linkages, therefore, one should not assume that these ni numbers are

always going to be some whole numbers, you know 10, 5, 7, 8 and so on, you might also have

about 8.3253 kind of a number for these nis okay.

Whenever, this type of a fractional flux exist then the total flux is usually defined as the integral

over the differential amount of flux that gets need to a particular circuit.  However, the given

circuit  the  amount  of  magnetic  flux linking  will  be  given by the  integral,  the  open surface

integral of the magnetic flux density correct, this comes of because, you know you have the total

integral of D.ds where d was the electric flux density.

When you integrate this one over an open surface okay, you would obtain whatever the charge

that was present okay, or the flux lines that was crossing that particular surface, when you close

it, you would find the source of that D lines as the charges, but if you keep this open surface, this

is the open surface that I am looking at and if the D fields are going around or crossing this

particular surface, then the amount of flux crossing this hatched surface area will be obtained by

the open surface integral of D.

In a manner that is very similar to that you might think of this has B lines and this as the cross

section or the open surface over which I am actually trying to integrate. So if I denote the area

integration by subscripting this integral sign with A, this would be the amount of flux that would

be linked okay. of course, this is the flux that is actually D.ds is the flux that is linked partially

d  is not the correct thing would be to actually say that the partial flux linkage is D.ds where weϕ

are assuming that these kind of constant over that particular surface.

So pushing this back into the expression for the total flux linkage Λ will be equal to integral of n

B.ds okay. This integral still make sense, because B.ds is the differential amount of flux linkage,

of course if you integrate over the complete area you will get the total flux that is linking that

particular cross section okay. Since, I am only interested in the differential amount of the flux

that is linked or the infinite decimal flux linkage, I write this as B.ds okay.
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In a linear medium the magnetic flux density is proportional to current. We have seen that for

example, in the case of a long infinitely long wire, the magnetic flux density B will be given by

along the  direction we have placed the wire along the Z direction let us. So this would beϕ

given by μI the wire is carrying a current of  then this would be given by μI/2Лr where r is theϕ

radial distance from the wire at which we are evaluating this magnetic flux or magnetic flux

density okay.

So in a linear medium B is function of I, how much current is being carried by that particular

current and it is also directly proportional to this I. If I evaluate B at some reference current I0,

so if I evaluate this B at some reference current, then I obtain some magnetic flux density which

we will denote it as B(I0). If I divide this one by I0 which is the reference current, this should

then be equal to whatever the flux that I calculate with the actual current I that is propagating or

being carried by the wire divided by the current in the wire okay.

For a linear medium this of course holds true, because right hand side quality simply becomes

the constant independent of I right. So right hand side of this equation is a constant independent

of I. Now I can substitute therefore,  what is the magnetic flux density when the wire of the

conductor is carrying the current of I and that could be equal to I/I0 B(I0) and I substitute this

into the expression for the flux linkage.

So I obtain n B(I0).ds/I0 and there is also another I along with this okay. Since I is not dependent

on what surface area we are evaluating, so I can push this I outside of this integral okay. So I



obtain I integral of n BI0 which is the magnetic flux density given a reference current I0.ds

which will tell you the amount of the differential magnetic flux that is crossing from the surface

area. And this quantity I can now call this entire right hand side quantity okay, once I go through

the complete area A, I can call this right hand side quantity by some symbol called L, and this L

is now defined as inductance associated with that particular conductor okay.

So this is defined as inductance. So in simple words okay, inductance is defined as what is the

total flux that is linking to a particular conductor divided by what is the current that is being

carried by the conductor okay. And this equation is important, so if you remember this then you

can actually solve and calculate inductances. 
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As an example, we will consider, before we consider the example I should point out what do we

mean by flux linkage okay. Now imagine that I have a wire, so I have this wire which I have

bound it up in the form of a coil. So this is the wire which is carrying some current I okay, and of



course the same current is returning back from this. Now you imagine that I actually have a

metal ring okay, what I do with that metal ring is, I take the metal ring okay.

And then pass it through, if this is an imaginary metal ring of course okay. So I pass this metal

ring through this coil okay, such that the coil actually cuts this particular region okay. So the coil

is essentially cutting this region, of course it is not cutting in the real sense, it is only cutting in

the imaginary sense okay. So I can show you by an example, suppose this is the wire that is

carrying a current, so let us say the current being going around this particular direction.

Now you imagine that my hand, you know this is making the symbol okay, this is the loop that is

having. So if I now simply go through this loop and then link through this wire okay, you can

imagine that this part of the wire is actually coming back. So this part of the wire is coming back,

but my thumb and the index fingers are not crossing that other path okay. So there is this written

path is there, but my loop which is made by this fingers are not crossing that one.

So this we say as a single flux linkage okay, so this we say as a single flux linkage. So here if we

calculate what is the amount of flux linkage, that if you say what is the numbers of flux linkages,

the number of flux linkages is 1. Now we consider a slightly different example, this time it will

be little complicated okay. So we do not just consider the current carrying wire, but we actually

wind it up in the form of a coil okay.

So we wind it up in the form of a coil, so let me also draw the other part of this. So the current I

is entering here and that same current I will be coming back to the coil okay. Now let me show

you one line okay, and you guess what would be the amount of flux linkages that happens to this

particular line okay. So let me go through this line okay, so this is the line that in green which I

have written and I have marked.

And I know that wherever I show that, you know it is the line is not continuous, it means that the

corresponding wire or the loop is actually passing through this, this imaginary loop is passing

through this or cutting through that one. So how many cuts we have now here, we have a total of

three cuts correct. So this is an example where we have three flux linkages okay.

We have to imagine that there is a sheet that you can think off and we can imagine that you can

take a metal wire or something and then just that wire passes through these planes, this is one

plane that I shown with the hatched area, this is another plane that I have shown in the hatched



area. And there is one more cut coming through this one, because you can imagine that this itself

is one plane, and we are cutting this plane exactly once. So there is total number of cuts that we

have made or the flux lines cutting these coil is about three times and therefore, this is a three

flux linkage example.

On the same graph I would like to show you a different kind of a cut okay. This time let me show

you a cut where we begin with this flux line okay, and then we go through here, go through here

okay, rather we go all the way over here. And then we come to this, and then we come back over

here. So let us see how many cuts we actually made okay. So here we made 1, 2 and 3 okay, so

we only have made 3, so let me actually erase this line, and then copy it in a slightly different

way okay.

So let me cut at this point as well. So how many times I am actually cutting this coil, I am cutting

this coil four times. So here is one time, this is the second time, so this was the first time, second

time, third time, and fourth time. So the number of flux linkage here is actually four okay. I will

show you one last example, so that it becomes clear to you. Suppose this is the flux line that is

coming here okay.

And  then  this  comes  all  the  way  here,  and  flux  only  this  particular  surface  okay.  So  this

particular flux line that is coming in comes all the way over here, and then cuts through this

particular coil. So 1, 2 and 3, so maybe this is the third coil from the top okay. How many flux

linkages do I have now, I have about 2 flux linkages. If I remove this second line okay, and

instead assume that the cut that I am going to make will actually pass through this coil okay.

So it passes through this coil,  then how many cuts do I have, this time I have about 2 flux

linkages okay. So as I said, the word links is little weak okay, you are not most of the time

interested in calculating individually these flux lines okay. What you will  be interested is  to

calculate what is the average flux linkage. In this case how many lines were there, there were

three lines and each line cut or linked to that particular coil in a different amount of time. 

So the first one was the four, second one was three, the third one was two, so 4+3=7, 7+2=9, 9/3

on an average you have three flux linkages to this particular coil okay. of course, these flux lines

have come from a certain magnet, or some kind of a magnetic field around this. This magnetic



field if it is lying externally or supplied externally to the coil, then this associates to the external

inductance.

However, we know that if there is a current flowing through the coil, it itself will generate a

magnetic field right. So if that magnetic field links, then you have an internal flux linkages okay.

so let us look at two examples.

(Refer Slide Time: 16:07) 

The first example that we are going to look at is what is called as a toroid. Toroids are very

important;  they  are  used  widely,  especially  in  PCDs  where  you  require  a  good  amount  of

inductance  for  chokes  and  other  cases.  So  toroids  are  very  important  way  of  obtaining

inductances okay. And what are the toroid consist of, the toroid is simply a magnetic material or

a long solenoid okay that has been completely bound in the form of a circle.

And then you have a wire that goes through this okay, so you have a wire that is linked, let me

just show it with the way like that okay. So the current I will be entering this toroid and the

wires, and then the current, same current will be coming back okay. And in violet end circles

here each time you can simplify this movement by assuming that, there is actually a closed loop

okay, and there is one more closed loop at this point and you said there are about N such closed

loops through which this is linking the solenoids or through these loops are actually going into

the solenoid.



So the simpler version is to imagine that there are loops instead of this kind of a spiral kind of a

winding okay. This assumption is true as long as the number of windings N will be very large, so

N is large and the windings are very tight okay. Also if I call the radius of this solenoid as R, so

this is the radius, so at this point is the radius placing on that one, this is from the origin to the

point where I have indicated here is the radius.

And the  coil  itself  is  assumed  to  have  a  certain  amount  of  thickness  okay,  the  solenoid  is

assumed to have a certain amount of thickness which we will denote by D okay. Now how do I

find the field okay, the first step would be to find the field, magnetic field and from the magnetic

field I will then be able to find out what is the amount of flux, because amount of magnetic flux

linkage and from that I will be able to calculate the inductance.

So how do I calculate the field of this toroid. Well, we have seen in the last two modules that

whenever there is a current flow in a given path, the magnetic field will tell to end circle that. So

if there is a wire, magnetic field is circling here, and if the current itself is going through the

circles in this way to the circle that is shown in this green color, the magnetic field has to come

out as perpendicular to this.

So it has to come out perpendicular here, it has to come out perpendicular here perpendicular and

what you will see is that the magnetic field is going to form circles along the  direction. So if Iϕ

consider this as a  direction this would be the circle that I am going to obtain. We will alsoϕ

make couple of additional assumptions saying that R is much larger than D, so we are going to

neglect the thickness of the toroid material.

And because of this if I want to find the magnetic field inside with this between these regions, I

know that value or that particular  radial  distance let  us denote it  as some value of r,  in our

approximation that R is much larger than D, R is approximately equal to r okay. Of course, if I

consider a particular radius R such that it would be in this region. So in these hatched regions if I

consider their radius R to lie okay, so this is the radius R.

Then the magnetic field or the magnetic flux density integrated around that particular or at a

constant radius R will be given by B , because there is a direction in which you are magneticϕ

field is. So this B  divided by μ integrated over the corresponding loop here which is rd  thatϕ ϕ

must be equal to the total current that is being enclosed, and the total current enclosed is N times



I, because through each green loop you will have one current coming out or whether the each D

field encircles one current in this loop and there are N such loops.

So the total current enclosed will be equal to NI from which you can calculate what is the value

of the magnetic field at a given radial distance R, and this would be given by μNI/2Лr okay, as

long as R is in this hatched area okay. So we are calculating the magnetic field, and the magnetic

field is confined into this thickness okay, so the magnetic field does not come out of the toroid,

because it cannot come out of the toroid in a tightly bound toroid, the magnetic field down side

will have to be equal to 0.

So this is how the magnetic flux would be, and I want to find out how much of magnetic flux is

linking this particular current loops okay. So imagine that I know, I have, I am looking at this

particular circle, although I am, you know it is a little exaggerated showing that these wires have

come out in actuality the wires are only coming or tightly bound on the thickness itself right. And

the magnetic field is now crossing this perpendicular to this surface area, and what is the surface

area of that one, that is actually the surface area of a circle that you would draw on the toroid

outside which has a radius of d/2.

Therefore, the surface area of this one through which the magnetic field will be coming out and

perpendicular to that one, and therefore, corresponds to the total flux associated with that one.

That surface area is dϕ 2/4 okay. So I can multiply the amount of or I can find out what is the total

magnetic flux, the total magnetic flux will be NB (ЛDϕ 2/4). 

And in this expression I will replace this small r by the R, because that is what the assumption

that we have made, the thickness of these toroid is actually very small. Therefore, I can replace

this small r by R.

(Refer Slide Time: 22:10)



And then, I can write the total flux linkage as N.

(Refer Slide Time: 22:16)  



You remember this, the total flux linkage will be given by NB (ЛDϕ 2/4) so we can write it here

itself,  B  is  given by μNI/2ЛR after  making this  approximation  times  ЛDϕ 2/4,  so  clearly  Л

cancels out N increases by N2.

(Refer Slide Time: 22:36) 



So the total flux linkage that we are going to get will be μN2ID2/8R okay, and the inductance L is

given by Λ/I which in this case becomes μN2D2/8R, so this is the inductance of a toroid coil. As

the next example we will  consider the coaxial  cable okay. You remember from the previous

module that the coaxial cable had an inner conductor of A and an outer conductor of thickness C-

B, because we assume that the outer conductor, you know you had a two concentric circles one

of radius b and the other one of radius c.

So this  is  one conductor which actually  carries  the written current of –I, this is the forward

conductor which carries a forward current of I or the inner conductor which carries a current I

okay. What is the inductance of this cable, we have to remember or recall what is the field that

we actually calculated okay. And once we know the magnetic fields, then we will have to find a

particular surface through which we will have to calculate the flux linkage.

In this example we will see that the flux linkage will not be complete in at least two sections of

the coaxial  cable  okay.  Flux linkage will  be complete  only in  one section,  in  the other  two

sections would not be complete okay. First let us write down what is the fields that we calculate.

(Refer Slide Time: 24:10)



For this one we calculated fields in three different regions, the first region when r<a was the

inner conductor case, where the magnetic field B is given by μTr/2Лa2 and for the region where

you are in between the inner and the outer conductor the magnetic field B was given by μI/2Лr.

And for the region between b and c that is in the outer conductor region, the magnetic field was

given by 2ЛrB/μ so this 2ЛrH, B/μ is actually H correct, this would be equal to the current I-I r2-

b2/c2-b2 okay.

So we saw this yesterday and from which of course we can find out what could be the magnetic

field B. Now notice something over here, in this region the magnetic flux okay, depends on the

value of R at which we are calculating the magnetic  flux. Therefore,  the corresponding flux

linkage well we have to tell you where the surface that you are going to look at, the surface for

calculating the amount of flux linkage can be considered to be by looking at the coaxial cable

longitudinal cross sections.

So this is the longitudinal cross section, this is a, this is b, and this one is c right. So we have to

first find a surface through which each flux line cuts only once, and because the magnetic field is

circulating right, so this is how the magnetic field is circulating right. So the surface must be

chosen in such a way that the magnetic field actually comes out of it. So if I have this wire the

magnetic field has to, because it is circulating it is coming out in this way. 

So my surface has to be kept here, so that this four lines which I am showing are the magnetic

field lines or the flux lines that are coming out. So this is the direction of the inner conductor, this



is the magnetic flux, and this surface if I now pick will have a magnetic flux line coming out. So

the surface that I am going to pick will be in the constant  plane, because B will be in the ϕ ϕ

plane and therefore that will be perpendicular to the  plane.ϕ

So if I draw that constant surface, let me take that surface as all the way from ar=0 to this one,

and the length of this surface element will be denoted by L, and let us see we are not interested in

the inductance section, but we are interested in the inductance per unit length okay. So this is the

surface that we are going to consider, and if you consider this surface as long as you are in the

inner  conductor,  you  see  in  the  inner  conductor  the  magnetic  flux  lines  would  actually  be

complete in this way.

So the magnetic field lines at a given R would be circling the current through this one right. So if

I consider this small value of R it would be circling through here, but only this portion is getting

linked right. So it is only one portion or the fractional portion that actually gets linked to the

surface that we have drawn. So because of that the fraction through which the flux links is given

by r2/a2.

If you are not convinced with this, you can just think of how much current is actually carried by

this particular hatched surface area, the green surface area. It will not carry the complete current,

it will only carry a current which is the fraction of the total current carried by the conductor, the

inner conductor has a current density of I/Лa2. And only a fraction that density times Лr2 is being

carried by this loop.

And therefore, that is only a fraction of the conductor that the magnetic flux links. On the other

hand if you go outside, the magnetic flux lines links completely okay, it encloses the complete

current. So in the outside region the fraction N will be equal to 1, because the current density is

I/Лa2 and the fraction that is carried by any R outside of this one will not be, the density might be

I/Лa2, but when is your outside this loop right, outside the inner conductor then the entire flux

gets linked.

So essentially in the region outside the inner conductor or in between the inner and the outer

conductor, the fraction will be N=1. And by looking at this equation you can imagine what would

be the fraction that would be carried in the outer conducting region and that would be equal to 1-



r2-d2/c2-d2. So these values of r2/a2 and 1 and1-r2-d2/c2-d2 are the partial fractions that are linking

to this inner conductor and the outer conductor in this way.

(Refer Slide Time: 29:05) 

Now to obtain the total flux linkage I simply have to integrate over the three regions, actually I

should have shown you that there are three surface regions over here, one will go from 0 to a, the

other one will go from 0 to b, the other one will go from a to b, the other one will go from b to c,

so there are three regions of integration depending on the value of R. And if you carry out those

integrations with the appropriate value of the magnetic fields and sign.

For example, for the inner conductor you are there from 0 to a and μIr/2Лa 2 r2/a2 ldr I have

actually taken the liberty of multiplying this by L. So this would be the contribution from the

first  integral  or  the  inner  integral  or  the  inner  conductor,  and  for  the  region  between  the

conductors you will have to integrate from a to b, that magnetic flux density is μI/2Лr there L

times dr, the fraction does not enter, the fraction in this case was r2/a2 for the inner conductor,

whereas from the outer conductor it does not.

So this is what you get, this is from integral region, and for the outer conductor you are going

from b to c, and you will have to write down the corresponding magnetic field as well as the

fraction through which this is linking, both I have indicated in the previous slide, so I will ask

you  to  put  that  one  in.  And  when  you  carry  out  the  integration,  and  once  you  obtain  the

integration this will all give proportional to the current I.



And if you divide this flux linkage by IL what you obtain is Λ/IL, but Λ/I is the inductance L

divided by L will give you the inductance for unit length okay. So inductance per unit length let

us  denote  it  as  some  L’ which  is  the  quantity  that  we  were  very  interested  in  the  case  of

transmission lines when we were discussing. And this L’ will be equal to μ/8Л+μ/2Л log(b/a)+

this is a very complicated term you can actually sit and do the integration, and then show that

this is correct okay.

So it is given by this value, this is very important practical, therefore I am actually writing this

entire thing okay. –c2/c2-b2+1/4 c2+b2/c2-b2 times H/m. So it might look complicated,  but this

actually has three contributions okay, one is what is called as the internal contribution, and this

internal contribution will be independent of frequency okay. We have calculated inductance only

for the case of VC frequencies, but this calculation when you extend it for the AC frequencies or

for higher frequencies we will see that the other terms will actually start to disappear.

However, this term μ/8Л being completely independent of the frequency will always survive

okay. In fact this we will show to be contributing as to what is called as the internal inductance of

a given transmission line, and in this case it is actually μ/8Л. The second term will be present

okay, more or less always except in very, very high frequencies, but this term will be present,

because the region between the conductors will always enclose the current I.

If I remove the outer conductor, then this term will not be present, but if I include the outer

conductor  this  term  would  always  be  present.  This  term  can  actually  be  considered  to  be

negligible when you consider the thickness c-b would be approximately 0. So in other words if I

consider the outer conductor thickness to be 0, then this term can be eliminated okay. So this is

what I wanted to talk to you about the inductance calculation.

With this we will stop with magnetic electric field calculations we have performed, magnetic

field calculations, capacitance or inductance we have looked at. And we have looked at a few

transmission line structures for which we have calculated the capacitance and inductances. Thank

you, very much.
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