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Hello and welcome to this lecture on the fundamentals of electric drives. In our previous session, 

we began exploring the continuous current operation of a single-phase fully controlled converter. 

Today, we will build on that discussion and continue delving deeper into the topic. Let's pick up 

where we left off.  
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Now, let's consider a single-phase full-controlled converter. Here, the converter is connected to 

the load, which in this case is the armature of a separately excited DC motor. The current flowing 

through the armature is continuous, and this is reflected in the current and voltage plots against 

the angular position ωt.  

Our objective is to calculate the average armature voltage. This task is straightforward due to the 

continuous current operation. To determine the average armature voltage, we integrate the input 



voltage waveform over one half-cycle. The integration is performed from α to π + α and is given 

by: 

Average Armature Voltage =
1
𝜋𝜋
� 𝑉𝑉𝑚𝑚
𝜋𝜋+𝛼𝛼

𝛼𝛼
sin(𝜔𝜔𝑡𝑡)  𝑑𝑑(𝜔𝜔𝑡𝑡) 

Solving this integral results in: 

Average Armature Voltage =
2𝑉𝑉𝑚𝑚
𝜋𝜋

cos(𝛼𝛼) 

This represents the average output voltage of the bridge, which is also the armature voltage of 

the DC motor. 

Now, applying this average armature voltage of 2𝑉𝑉𝑚𝑚
𝜋𝜋

cos(𝛼𝛼) to the motor, we can derive the 

torque-speed characteristic. Using the fundamental relationship for a DC motor, we have: 

2𝑉𝑉𝑚𝑚
𝜋𝜋

cos(𝛼𝛼) = 𝑅𝑅𝑎𝑎𝐼𝐼𝑎𝑎 + 𝐸𝐸 

where Ra is the armature resistance, Ia is the armature current, and E is the back EMF. From this 

equation, we can isolate the speed as: 

𝜔𝜔𝑚𝑚 =
2𝑉𝑉𝑚𝑚
𝜋𝜋𝐾𝐾Φ

cos(𝛼𝛼) −
𝑅𝑅𝑎𝑎𝑇𝑇
𝐾𝐾Φ2 
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This expression defines the speed-torque characteristic of a separately excited DC motor under 

continuous current operation. Additionally, we have already derived the speed-torque 

characteristic for discontinuous current operation.  

These two key equations allow us to compare the speed-torque characteristics of the motor in 

both continuous and discontinuous current modes when powered by a single-phase full-

controlled converter. 

Now, let’s examine the characteristic more closely. As we vary α, the no-load speed of the motor 

changes. This variation in α directly affects the no-load speed. However, despite this change in 

speed, the slope of the characteristic remains almost constant. The reason for this is that the 

armature resistance remains unchanged, so while the no-load speed shifts with α, the overall slope 

of the speed-torque characteristic is not affected. 
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Let’s now visualize the torque-speed characteristic by plotting speed on the y-axis and torque on 

the x-axis for different values of α. We'll consider cases for α = 0∘, α = 30∘, α = 60∘, and α = 90∘. 

When α = 90∘, the no-load speed becomes zero, assuming the current remains continuous. 

However, at lower values of torque, there is a tendency for the current to become discontinuous.  

As the torque decreases, especially at low torque values, the current starts to become 

discontinuous, leading to a shift in the operating region. This behavior is dictated by the earlier 

derived equations, marking the boundary between continuous and discontinuous operation. For 



α = 30∘, α = 60∘, and α = 90∘, we observe that there’s a clear boundary, with one region 

representing continuous current operation and the other discontinuous current operation. 

The no-load speed under discontinuous operation is given by 𝑉𝑉𝑚𝑚
𝐾𝐾Φ

, as at no load, the back EMF 

equals the supply voltage, resulting in the current being zero. If we assume perfect continuous 

current operation, the speed-torque characteristic would intersect the y-axis at 2𝑉𝑉𝑚𝑚
𝜋𝜋𝐾𝐾Φ

. 

So, the no-load speed in discontinuous current operation is 𝑉𝑉𝑚𝑚
𝐾𝐾Φ

, since, under no-load conditions, 

the back EMF equals the supply voltage Vm. Hence, when the back EMF equals the peak of the 

supply voltage, the current becomes zero, and so does the torque. This marks the situation where 

𝑉𝑉𝑚𝑚 = 𝐸𝐸 = 𝐾𝐾Φ𝜔𝜔𝑚𝑚0, giving us the no-load speed 𝜔𝜔𝑚𝑚0 = 𝑉𝑉𝑚𝑚
𝐾𝐾Φ

. 

As a result, when the motor enters discontinuous current operation, it typically occurs when the 

load is reduced for a given α. 

For discontinuous current operation, the relevant equation is this one. This equation specifically 

applies to discontinuous current operation, where it relates the speed with the torque. On the other 

hand, when the load is higher, the motor operates under continuous current conditions. So, we 

have a separate equation for continuous current operation, which similarly relates the speed to 

the torque. 

Now, what we observe in continuous current operation is that the torque-speed characteristic 

forms nearly straight lines, and when plotted for different values of α, the lines are almost parallel 

to each other. This means the speed regulation in continuous current operation is quite good. 

However, when the current becomes discontinuous, the characteristic changes significantly, the 

speed drops quickly, and the regulation becomes poor, with a noticeable drop in speed for small 

changes in torque. 

There is a clear boundary between continuous and discontinuous current operations, determined 

by the critical speed ωc. When the motor speed ωm is less than ωc, the operation remains 

continuous. But when the speed exceeds the critical speed, the operation shifts to a discontinuous 

mode. 

Now, let's consider what happens when we increase the value of α. For example, if we set α to 

120 degrees, the system enters the braking region. As we further increase α to 150 degrees and 



beyond, we move deeper into this braking region. In this case, the no-load speed decreases 

further, and the motor transitions from motoring in the first quadrant to braking in the fourth 

quadrant. 

Thus, in motoring, the operation occurs in quadrant 1, while braking takes place in quadrant 4. 

Next, we will examine how to achieve braking using a full-control converter. 
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Now, let’s examine how a full-control converter operates in both motoring and braking modes. 

Here, we have a block diagram representing the full-control converter supplying a motor load, 

which consists of resistance Ra, inductance La, and the back EMF E. The terminal voltage Va is 

applied across the motor. This diagram reflects the equivalent circuit of the motor, where the 

actual motor generates a back EMF E, and the field is separately excited. This setup represents a 

single-phase, fully-controlled bridge converter. 

When the motor is in motoring mode, the operation occurs in the first quadrant. In this state, the 

speed is positive, let's denote it as ωm > 0, and the torque is also positive. The firing angle α for 

motoring operation typically ranges between 0° and 90°. During motoring, current Ia flows in 

only one direction, into the motor, because the thyristor bridge can conduct current in one 

direction only. So, in this mode, the converter feeds power to the motor, enabling motion in the 

forward direction. 

Now, let's move on to braking. In order to transition to braking, the same full-control converter, 



still fed by the AC supply, is used. However, braking can only occur if the motor's back EMF 

reverses. The reversal of the back EMF happens when the motor speed ωm becomes negative, 

i.e., the motor is rotating in the reverse direction. This reversed speed results in the back EMF 

changing polarity, where the positive and negative terminals of the back EMF switch positions, 

leading to a reversed back EMF. 

In braking mode, although the current Ia remains in the same direction (since the thyristors can 

only allow unidirectional current flow), the back EMF now opposes the current. This reversed 

EMF effectively means the motor is now supplying energy back into the system, converting 

mechanical energy into electrical energy, thus achieving braking. The motor acts like a generator, 

dissipating energy through the resistive and inductive components. 

So, during motoring, the speed and torque are positive, and the motor operates in the first 

quadrant. When braking, the speed becomes negative, the back EMF reverses, and the motor 

begins to return energy back to the system, achieving braking. 

So, this operation takes place in the fourth quadrant. Now, what’s the value of α here? The firing 

angle α is operated beyond 90°, meaning it ranges from 90° to 180°. In this region, the motor 

speed ωm becomes negative, indicating braking. During motoring, ωm is positive, but for braking, 

ωm is negative. 

This type of braking is known as regenerative braking because the kinetic energy from the motor 

is fed back to the supply. The single-phase converter operates with α higher than 90°, causing the 

output voltage Va to reverse. This reversed voltage means that if we observe the converter voltage 

Va, the power is negative, signifying that power flow is now from the load back to the supply.  

In contrast, during motoring, the power flow is positive, with energy being transferred from the 

supply to the motor and ultimately to the load. However, in regenerative braking, the power flow 

is reversed, and that’s why this is called regenerative braking. 

As this operation occurs in the fourth quadrant, let’s briefly revisit the quadrant system. If we 

plot speed on the vertical axis and torque on the horizontal axis, quadrant 1 represents motoring, 

where the motor drives the load forward with positive speed and positive torque. The firing angle 

α in this case ranges from 0° to 90°.  

In quadrant 4, we have regenerative braking, where α exceeds 90° but remains below 180°. This 



quadrant is called reverse regenerative braking because the speed is negative while the torque 

remains positive. However, reverse regenerative braking can only occur when the speed is 

negative, which is possible in overhauling load conditions, such as when dealing with active loads 

like lifts or elevators that can be braked regeneratively. 

That covers the operation of a full-control converter. Now, let's proceed to understand the 

behavior of a half-controlled converter. 
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Now, let's discuss the operation of a half-controlled converter driving a separately excited DC 

motor. This is a single-phase half-controlled converter feeding a separately excited DC motor.  

So, what does the converter's structure look like in this case? The converter consists of two 

Silicon-Controlled Rectifiers (SCRs) and two diodes. It supplies the armature of the DC motor, 

which has resistance Ra, inductance La, and a back EMF E. The input to the converter is an AC 

supply Vs, and the output is the armature current Ia and armature voltage Va. 

Just like the full-control converter, the half-control converter can also operate in two different 

modes: continuous current mode and discontinuous current mode. We'll examine these two 

modes separately, starting with discontinuous current mode. 

Now, let's take a closer look at the operation of this converter in discontinuous current mode. The 

input supply is a sine wave, and the corresponding negative half-cycle of that sine wave is also 

present. The motor’s back EMF is denoted by E, and the converter is triggered at an angle α, with 



π representing 180°. When α is reached, the current begins to flow from zero, and at π, when the 

supply voltage attempts to turn negative, the diodes become forward-biased. 

At this point, a freewheeling path is formed through the two diodes, preventing the output voltage 

from becoming negative. Consequently, the output voltage looks like this: after the triggering, it 

rises, and then at a certain point, it drops to zero. From here, the current in the circuit decreases 

exponentially, gradually reaching zero.  

This extinction of current occurs at the angle known as the extinction angle, β, similar to the case 

with a full-control converter. Once the current becomes zero, the output voltage also becomes 

equal to the back EMF of the motor. 

So, this is how the current and voltage waveforms behave in a half-controlled converter operating 

in discontinuous current mode. The current starts from zero, rises, and then decays to zero 

exponentially, while the output voltage initially follows the input voltage, drops to zero, and 

eventually becomes the motor’s back EMF. 

At this point, the output voltage builds up and eventually becomes equal to the motor's back EMF. 

The nature of the output voltage waveform looks like this, and if the operation is periodic, the 

voltage waveform will follow a similar pattern continuously. Now, we can break down the 

discontinuous current operation into several distinct modes.  

The first mode is called the duty interval. This occurs when ω t is greater than or equal to α and 

less than or equal to π. During this interval, the supply voltage is applied to the output, meaning 

that between α and π, the output receives the supply voltage. Essentially, we are working with an 

RLE circuit where the armature voltage Va is defined by: 

𝑉𝑉𝑎𝑎 = 𝑅𝑅𝑎𝑎𝐼𝐼𝑎𝑎 + 𝐿𝐿𝑎𝑎
𝑑𝑑𝐼𝐼𝑎𝑎
𝑑𝑑𝑡𝑡

+ 𝐸𝐸 

Here, Va is the voltage across the armature, Ra is the armature resistance, La is the armature 

inductance, E is the back EMF, and 𝑉𝑉𝑠𝑠 = 𝑉𝑉𝑚𝑚 sin𝜔𝜔 𝑡𝑡 represents the supply voltage. So, during the 

duty interval, the supply voltage is a sine wave, expressed as 𝑉𝑉𝑚𝑚 sin𝜔𝜔 𝑡𝑡. 

As before, this equation has both a steady-state component and a transient component. The 

current equation during the duty interval can be written as: 



𝐼𝐼𝑎𝑎 =
𝑉𝑉𝑚𝑚
𝑍𝑍

sin(𝜔𝜔𝑡𝑡 − 𝜃𝜃) − �
𝐸𝐸
𝑅𝑅𝑎𝑎
� + �

𝐸𝐸
𝑅𝑅𝑎𝑎

−
𝑉𝑉𝑚𝑚
𝑍𝑍

sin(𝛼𝛼 − 𝜃𝜃)� exp(−(𝜔𝜔𝑡𝑡 − 𝛼𝛼) cot𝜃𝜃) 

Here, Z is the impedance of the circuit, given by: 

𝑍𝑍 = �𝑅𝑅𝑎𝑎2 + (𝜔𝜔𝐿𝐿𝑎𝑎)2 

And θ is the phase angle, calculated as: 

𝜃𝜃 = tan−1 �
𝜔𝜔𝐿𝐿𝑎𝑎
𝑅𝑅𝑎𝑎

� 

This is the current equation during the duty interval. 

Now, let's move on to the freewheeling interval. At ω t = π, the current Ia reaches a value Ia(π). 

The expression for Ia(π) can be derived by substituting ω t = π into the current equation: 

𝐼𝐼𝑎𝑎(𝜋𝜋) =
𝑉𝑉𝑚𝑚
𝑍𝑍

sin(𝜋𝜋 − 𝜃𝜃) −
𝐸𝐸
𝑅𝑅𝑎𝑎

+ �
𝐸𝐸
𝑅𝑅𝑎𝑎

−
𝑉𝑉𝑚𝑚
𝑍𝑍

sin(𝛼𝛼 − 𝜃𝜃)� exp(−(𝜋𝜋 − 𝛼𝛼) cot𝜃𝜃) 
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After the duty interval ends, we enter the freewheeling interval. During this period, the voltage 

across the load cannot become negative because the freewheeling diodes provide a path for the 

current. As a result, the current freewheels through the diodes, keeping the voltage at zero. The 

current decays exponentially during this interval, while the voltage remains at zero due to the 



freewheeling action of the diodes. 

Now, let’s focus on the freewheeling interval, which occurs when ω t is greater than π and less 

than β. During this freewheeling interval, the armature voltage Va ideally equals zero because the 

output is effectively short-circuited by the diodes. If we assume the diodes are ideal, we can 

express the output voltage Va as: 

𝑉𝑉𝑎𝑎 = 𝑅𝑅𝑎𝑎𝐼𝐼𝑎𝑎 + 𝐿𝐿𝑎𝑎
𝑑𝑑𝐼𝐼𝑎𝑎
𝑑𝑑𝑡𝑡

+ 𝐸𝐸 

In this scenario, since Va is zero, we arrive at a first-order differential equation. We can solve this 

equation similarly to how we approached the previous cases, addressing both the steady-state and 

transient responses. 

The solution to this differential equation reveals that the steady-state component of the current Ia 

is given by: 

𝐼𝐼𝑎𝑎 = −
𝐸𝐸
𝑅𝑅𝑎𝑎

 

The transient part takes the form of a constant A multiplied by an exponential decay, leading to: 

𝐼𝐼𝑎𝑎 = −
𝐸𝐸
𝑅𝑅𝑎𝑎

+ 𝐴𝐴𝑒𝑒−𝜔𝜔𝑡𝑡 cos𝜃𝜃, 

Now, let’s evaluate the initial conditions at 𝜔𝜔𝑡𝑡 =  𝜋𝜋. At this point, the current Ia is denoted as 

Ia(π), and we can express it as: 

𝐼𝐼𝑎𝑎(𝜋𝜋) = −
𝐸𝐸
𝑅𝑅𝑎𝑎

+ 𝐴𝐴𝑒𝑒−𝜋𝜋 cos𝜃𝜃, 

From this equation, we can solve for the constant A: 

𝐴𝐴 = 𝐼𝐼𝑎𝑎(𝜋𝜋) +
𝐸𝐸
𝑅𝑅𝑎𝑎

𝑒𝑒𝜋𝜋 cos 𝜃𝜃, 

We can now substitute this expression for A back into our differential equation, which we will 

refer to as equation (1). This updated equation will be labeled as equation (2), and we will 

consider the equation we derived previously as equation (3). Let's now denote our new equation 

with A substituted as equation (4).  



Thus, we have: 

𝐼𝐼𝑎𝑎 = −
𝐸𝐸
𝑅𝑅𝑎𝑎

+ �𝐼𝐼𝑎𝑎(𝜋𝜋) +
𝐸𝐸
𝑅𝑅𝑎𝑎

𝑒𝑒𝜋𝜋 cos 𝜃𝜃� 𝑒𝑒−𝜔𝜔𝑡𝑡 cos 𝜃𝜃, 

This equation represents the current during the freewheeling interval. 

As the freewheeling interval concludes, the current approaches zero. We can set Ia = 0 to 

determine the extinction angle β. Substituting this condition into our earlier equation yields: 

0 = −
𝐸𝐸
𝑅𝑅𝑎𝑎

+ 𝐼𝐼𝑎𝑎(𝜋𝜋) +
𝐸𝐸
𝑅𝑅𝑎𝑎

𝑒𝑒−𝛽𝛽 cot 𝜃𝜃, 

This equation, which we will refer to as equation (6), contains the value of β and can be solved 

iteratively. 

Finally, if we wish to plot or calculate the average voltage value during the discontinuous current 

operation, we will need to perform an integration based on the established relationships and 

equations. 
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Let's discuss how we can perform the integration to find the average output voltage Va over one 

half-cycle. The integration is executed as follows: we integrate from α to π, where the voltage 

can be expressed as 𝑉𝑉𝑚𝑚 sin(𝜔𝜔𝑡𝑡)  𝑑𝑑𝜔𝜔𝑡𝑡. Then, we need to integrate from β to π + α, where the back 

electromotive force (emf) E is present.  



To visualize the voltage waveforms, we observe that from α to π, the voltage is represented by 

Va, followed by a zero voltage condition. After this, from β to π + α, the voltage takes on a finite 

value, which is E.  

By solving this integration, we will derive the average value of the output voltage for the 

discontinuous current operation of a half-controlled DC converter. Furthermore, this analysis will 

also enable us to determine the torque-speed characteristic for a separately excited DC motor fed 

by a half-controlled DC converter. We will discuss the analysis of the torque-speed characteristics 

in the next lecture. 


