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Hello and welcome to this lecture on the fundamentals of electric drives! In our last session, we 

began our discussion on induction motor drives, and we explored the concept of slip that occurs 

when the induction motor is in operation. 
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Now, the slip is defined as the ratio of 𝜔𝜔𝑚𝑚𝑚𝑚−𝜔𝜔𝑚𝑚
𝜔𝜔𝑚𝑚𝑚𝑚

, where ωms represents the synchronous speed. To 

express ωms in radians per second, we can use the formula 𝜔𝜔𝑚𝑚𝑚𝑚 = 2𝑓𝑓
𝑃𝑃
⋅ 2. Conversely, if we want 

to define it in revolutions per minute (RPM), the equation becomes 𝜔𝜔𝑚𝑚𝑚𝑚 = 2𝑓𝑓
𝑃𝑃
⋅ 60, which 

simplifies to 𝜔𝜔𝑚𝑚𝑚𝑚 = 120𝑓𝑓
𝑃𝑃

. Here, the unit for ωms is RPM, while the previous expression is in radians 

per second. 



In this context, f denotes the frequency of the input supply, which provides voltage to the motor, 

and P represents the number of poles in the induction motor. This is the speed at which the rotating 

magnetic field moves. When we apply a three-phase voltage, the magnetic field rotates 

sequentially from phase A to phase B to phase C. The speed of this rotation can again be expressed 

as 𝜔𝜔𝑚𝑚𝑚𝑚 = 2𝑓𝑓
𝑃𝑃
⋅ 2𝜋𝜋, in radians per second or 𝜔𝜔𝑚𝑚𝑚𝑚 = 120𝑓𝑓

𝑃𝑃
 in RPM. 

Now, let’s redraw the equivalent circuit. We have already observed that this is the equivalent 

circuit which can be simplified for our calculations. Although we are dealing with three phases, 

we can represent it in a simplified manner that is sufficient for our analysis. This is the magnetizing 

reactance, and sometimes this magnetizing reactance can be moved to the input side of the circuit. 
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So, we derive another circuit representation that includes the resistance, reactance, rotor reactance, 

rotor resistance, and the magnetizing reactance, which is now moved to the input side. This is 

represented as jXm, and it includes the stator resistance and the leakage reactance of the stator. 

Additionally, we have the rotor reactance referred from the primary side and the rotor resistance 

referred from the primary side, divided by the slip. In this circuit, we apply the power phase 

voltage, which is an alternating current (AC) voltage. 

The input current is denoted as Is, while the current flowing through the rotor is referred to as 𝐼𝐼𝑟𝑟′ , 



and the current flowing into the magnetizing branch is labeled Im. This configuration represents 

the approximate equivalent circuit. This approximate equivalent circuit is quite accurate for 

calculating the torque and speed of the motor. 

Now, let’s explore how to determine the torque and speed. Here, we have the air gap, with one 

part being the stator and the other being the rotor. The induction motor can be conceptualized as a 

rotating transformer. The power flowing from the stator to the rotor is referred to as the air gap 

power, denoted as Pg.  

In the rotor circuit, we observe both reactance and resistance. The active power consumed by the 

rotor resistance, represented as 𝑅𝑅𝑟𝑟
′

𝑆𝑆
, contributes to the overall power dynamics. Therefore, we can 

express the air gap power as: 

𝑃𝑃𝑔𝑔 = 𝐼𝐼𝑟𝑟′2 ⋅
𝑅𝑅𝑟𝑟′

𝑆𝑆
 

Since we are dealing with a single-phase circuit, for a three-phase system, we multiply this 

expression by 3. 

Now, what exactly is 𝐼𝐼𝑟𝑟′? 𝐼𝐼𝑟𝑟′  represents the rotor current referred from the primary side. To evaluate 

𝐼𝐼𝑟𝑟′ , we consider the applied voltage V, which is the AC voltage, and we also take into account the 

impedance present in the circuit. Thus, we can express 𝐼𝐼𝑟𝑟′  as: 

𝐼𝐼𝑟𝑟′ =
𝑉𝑉

𝑅𝑅𝑚𝑚 + 𝑅𝑅𝑟𝑟′ + 𝑗𝑗(𝑋𝑋𝑚𝑚 + 𝑋𝑋𝑟𝑟) 

Here, Rs represents the stator resistance, while 𝑅𝑅𝑟𝑟′  indicates the rotor resistance. Additionally, Xs 

and Xr denote the leakage reactances of the stator and rotor, respectively. 

Let’s delve into the rotor current, denoted as 𝐼𝐼𝑟𝑟′ . Now, what about the copper loss? The rotor copper 

loss, represented as 𝑃𝑃𝑟𝑟 𝑐𝑐𝑐𝑐, is essentially equal to the product of the rotor current and the actual rotor 

resistance. This resistance can be divided into two components: one is 𝑅𝑅𝑟𝑟′ , the physical rotor 

resistance, and the other is a fictitious resistance given by 𝑅𝑅𝑟𝑟′ ⋅ �
1
𝑆𝑆
− 1�.  

In the context of an electric circuit, when we aim to derive the mechanical power, we need to 



incorporate the concept of slip, which is a mechanical variable. This aspect represents the 

mechanical output. Therefore, we can consider the resistance that represents the mechanical 

output.  

The rotor copper loss can be expressed as 𝐼𝐼𝑟𝑟2𝑅𝑅𝑟𝑟, and since we are dealing with a three-phase circuit, 

we multiply this value by 3. Consequently, we have the air gap power, with a portion allocated to 

the rotor copper loss, 𝑃𝑃𝑟𝑟 𝑐𝑐𝑐𝑐. Thus, the mechanical power, Pmechanical, is defined as the air gap power 

crossing the air gap minus the rotor copper loss: 

𝑃𝑃𝑚𝑚𝑚𝑚𝑐𝑐ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑐𝑐𝑎𝑎𝑎𝑎 = 𝑃𝑃𝑔𝑔 − 𝑃𝑃𝑟𝑟 𝑐𝑐𝑐𝑐 = 3𝐼𝐼𝑟𝑟2𝑅𝑅𝑟𝑟 ⋅ �
1
𝑆𝑆�

− 3𝐼𝐼𝑟𝑟2𝑅𝑅𝑟𝑟′ . 

This can be simplified to: 

𝑃𝑃𝑚𝑚𝑚𝑚𝑐𝑐ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑐𝑐𝑎𝑎𝑎𝑎 = 3𝐼𝐼𝑟𝑟2𝑅𝑅𝑟𝑟′ ⋅ �
1 − 𝑆𝑆
𝑆𝑆 �. 

Now, let’s discuss how to determine the torque, because ultimately, our goal is to find the motor 

torque. The motor torque T can be calculated as: 

𝑇𝑇 =
𝑃𝑃𝑚𝑚𝑚𝑚𝑐𝑐ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑐𝑐𝑎𝑎𝑎𝑎

𝜔𝜔𝑚𝑚
. 

Substituting in the expression for mechanical power, we have: 

𝑇𝑇 =
3𝐼𝐼𝑟𝑟2𝑅𝑅𝑟𝑟′ ⋅ (1 − 𝑆𝑆)

𝜔𝜔𝑚𝑚 ⋅ 𝑆𝑆
. 

By replacing the term for mechanical speed, we recall that: 

𝜔𝜔𝑚𝑚 = (1 − 𝑆𝑆) ⋅ 𝜔𝜔𝑚𝑚𝑚𝑚. 

When we substitute this into our equation, the (1 - S) term cancels out, yielding: 

𝑇𝑇 =
3𝐼𝐼𝑟𝑟2𝑅𝑅𝑟𝑟′ ⋅ 𝜔𝜔𝑚𝑚𝑚𝑚

𝑆𝑆
. 

This expression represents the torque of the induction motor. Now, let’s explore how we can write 



a more detailed expression for the torque. 
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The torque output, denoted as T, is expressed as: 

𝑇𝑇 =
3𝐼𝐼𝑟𝑟2

𝜔𝜔𝑚𝑚𝑚𝑚
⋅
𝑅𝑅𝑟𝑟′

𝑆𝑆
. 

Here, 𝐼𝐼𝑟𝑟2 can be represented as 3 ⋅ 𝑉𝑉2

�𝑅𝑅𝑚𝑚+
𝑅𝑅𝑟𝑟′

𝑆𝑆 �
2. This equation reflects our quest for the absolute value 

of Ir. Thus, we can express Ir2 in terms of the applied voltage V, the stator resistance Rs, and the 

rotor resistance referred to the primary side, 𝑅𝑅𝑟𝑟′ , along with the slip S. The complete equation 

becomes: 

𝐼𝐼𝑟𝑟2 =
𝑉𝑉2

�𝑅𝑅𝑚𝑚 + 𝑅𝑅𝑟𝑟′
𝑆𝑆 �

2
+ (𝑋𝑋𝑚𝑚 + 𝑋𝑋𝑟𝑟′)2

. 

We can substitute this back into our torque equation, which allows us to write the torque of the 

three-phase induction motor in a more detailed form: 



𝑇𝑇 =

3 ⋅ 𝑉𝑉2

�𝑅𝑅𝑚𝑚 + 𝑅𝑅𝑟𝑟′
𝑆𝑆 �

2
+ (𝑋𝑋𝑚𝑚 + 𝑋𝑋𝑟𝑟′)2

𝜔𝜔𝑚𝑚𝑚𝑚
⋅
𝑅𝑅𝑟𝑟′

𝑆𝑆
. 

This equation represents the average torque output of the three-phase induction motor.  

Next, to analyze the performance characteristics, we must determine if there is a maximum torque 

available. To find the maximum torque, we recognize that the only variable on the right-hand side 

of the equation is the slip S. The applied voltage, synchronous speed, frequency, stator resistance, 

rotor resistance, and the reactances are all fixed parameters in this scenario.  

Thus, to find the maximum torque, we set the derivative of the torque with respect to slip 𝑑𝑑𝑑𝑑
𝑑𝑑𝑆𝑆

 equal 

to zero: 

𝑑𝑑𝑇𝑇
𝑑𝑑𝑆𝑆

= 0. 

By performing this differentiation and simplifying the resulting expression, we can derive the slip 

at which maximum torque occurs, given by: 

𝑆𝑆𝑚𝑚𝑎𝑎𝑚𝑚 𝑑𝑑 =
𝑅𝑅𝑟𝑟′

�𝑅𝑅𝑚𝑚2 + (𝑋𝑋𝑚𝑚 + 𝑋𝑋𝑟𝑟′)2
. 

This equation provides the slip for maximum torque, where 𝑆𝑆𝑚𝑚𝑎𝑎𝑚𝑚 𝑑𝑑 can take on both positive and 

negative values. 

We find that the maximum slip is given by: 

𝑆𝑆𝑚𝑚𝑎𝑎𝑚𝑚 𝑑𝑑 = ±
𝑅𝑅𝑟𝑟′

�𝑅𝑅𝑚𝑚2 + (𝑋𝑋𝑚𝑚 + 𝑋𝑋𝑟𝑟′)2
. 

This implies that there are both positive and negative slip values. In fact, an induction motor can 

operate with a positive slip, indicating that it is running at a speed slower than the synchronous 

speed, or it can also function with a negative slip, suggesting that it is running faster than the 

synchronous speed. 



Now, if we substitute this slip value into our previous torque equation, let’s refer to that as Equation 

1, and we label our derived slip equation as Equation 2, we can determine the maximum torque 

Tmax.  

To express this mathematically, we can write: 

𝑇𝑇𝑚𝑚𝑎𝑎𝑚𝑚 = 𝑇𝑇 at 𝑆𝑆 = 𝑆𝑆𝑚𝑚𝑎𝑎𝑚𝑚 𝑑𝑑. 

When we substitute 𝑆𝑆 = 𝑆𝑆𝑚𝑚𝑎𝑎𝑚𝑚 𝑑𝑑 into Equation 1, we arrive at the expression for maximum torque: 

𝑇𝑇𝑚𝑚𝑎𝑎𝑚𝑚 =
3𝑉𝑉2

𝑅𝑅𝑚𝑚 ± �𝑅𝑅𝑚𝑚2 + (𝑋𝑋𝑚𝑚 + 𝑋𝑋𝑟𝑟′)2
⋅

1
2𝜔𝜔𝑚𝑚𝑚𝑚

. 

Thus, the maximum value of torque can be represented as: 

𝑇𝑇𝑚𝑚𝑎𝑎𝑚𝑚 =
3𝑉𝑉2

2𝜔𝜔𝑚𝑚𝑚𝑚
⋅

1
𝑅𝑅𝑚𝑚 ± �𝑅𝑅𝑚𝑚2 + (𝑋𝑋𝑚𝑚 + 𝑋𝑋𝑟𝑟′)2

. 

With this equation, we can now proceed to plot the torque-slip characteristics of the induction 

motor. This plot will provide valuable insights into how torque varies with slip, offering a 

comprehensive understanding of the motor's performance across different operational conditions. 
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If we were to illustrate the torque-slip or torque-speed characteristics, we can plot the data derived 

from Equation 1 to create a visual representation. On the X-axis, we will have the torque, while on 

the Y-axis, we will depict the speed. It's essential to note that the speed and slip are related through 

the equation ωm = (1 - s) ωms. This relationship means that as slip changes, so does the speed. 

Let’s identify some critical points on this graph. We will denote the no-load speed as ωm0, and here 

we will have the synchronous speed, which is represented as ωms. Typically, if we were to plot 

Equation 1 for various slip values, we would observe a characteristic curve. At this point, the slip 

value is equal to 0, while here it reaches 1, and beyond this, we see a slip value greater than 1, 

entering the realm of negative slip. 

The area where slip is less than 1 is referred to as the forward motoring region. This is the zone 

where the motor generally operates, known as forward motoring. If we were to increase the motor's 

speed beyond the synchronous speed, we would enter the generating operation phase, commonly 

referred to as forward regenerative braking. 

In this context, the section representing negative slip pertains to regenerative braking. When the 

motor operates within this range, it functions as a generator, and any energy produced will be fed 

back into the AC supply. 

Now, let’s consider the effect of changing the phase sequence of the motor. For instance, if the 

initial phase sequence is A, B, C, and we alter it to A, C, B, we effectively change the direction of 

the rotating magnetic field. In this case, instead of having a positive ωms, the rotating magnetic 

field will now have a value of -ωms. Consequently, this shift places us in the reverse motoring 

region, specifically within the third quadrant of the graph, which we will refer to as the reverse 

regenerative braking region. This demonstrates how altering the phase sequence not only changes 

the direction of the magnetic field but also transitions the operational mode of the motor. 

In our analysis, we begin with the first quadrant, which represents the motoring operation of the 

induction motor. Moving to the second quadrant, we observe the characteristics associated with 

forward braking. This region is particularly notable for a phenomenon known as forward plugging, 

where the slip is indeed positive, indicating that the motor is still functioning in a forward direction 

while experiencing a braking effect. 



As we extend our examination into the fourth quadrant, we encounter the concept of reverse 

plugging. This completes the torque-speed characteristic curve for an induction motor, 

encompassing all operational modes: forward motoring, forward regenerative braking, forward 

plugging, reverse motoring, reverse regenerative braking, and reverse plugging. The basis for these 

classifications stems from Equation 1, which illustrates that by assigning a negative value to the 

synchronous speed, or the speed of the rotating field, we can analyze the motor's behavior during 

reverse operations. 

Now, let’s delve into the typical behavior of the motor. Generally, we supply the induction motor 

with a three-phase balanced supply. For instance, consider a scenario where the voltage is set at 

400 volts; in this case, the phase voltage is 230 volts, with a phase sequence of A, B, and C. 

However, it's crucial to note that in real-world applications, this supply voltage may contain 

harmonics. These harmonics can significantly affect the motor's performance and must be 

considered in our analysis moving forward. 
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Let’s delve into the analysis of a three-phase induction motor powered by a non-sinusoidal supply, 

specifically one that contains harmonics. In this scenario, if we use an inverter to supply the motor, 

we may observe that the waveforms for phases A, B, and C are not sinusoidal. For instance, 

consider the voltage for phase A; instead of a smooth sine wave, it manifests as a square wave. 



This waveform can be illustrated as follows: [insert visual representation here]. 

Now, when we shift our focus to phase B, it is important to note that it lags phase A by 120 degrees. 

This results in a waveform for phase B that appears like this: [insert visual representation here]. 

The x-axis represents ω t. Furthermore, phase C is shifted from phase B by another 120 degrees, 

starting from this point, leading to its unique waveform: [insert visual representation here]. 

Consequently, all three input voltages, phases A, B, and C, are square waves, which inherently 

means they contain harmonics beyond the fundamental frequency. 

To analyze these harmonics, we can employ a Fourier series, allowing us to separate the 

fundamental frequency from the third harmonic, fifth harmonic, seventh harmonic, and so on. The 

square wave will predominantly consist of all odd harmonics. This occurrence is attributed to the 

phenomenon known as quarter-wave symmetry. In simpler terms, if we examine one-fourth of the 

cycle, we notice that the left-hand side is a mirror image of the right-hand side; this symmetry is 

crucial for our analysis. 

Due to this quarter-wave symmetry, the supply voltage will be rich in odd harmonics. For instance, 

let’s consider the voltage for phase A. The fundamental component can be expressed as 𝑉𝑉1 sin(𝜔𝜔𝑡𝑡). 

In the case of phase B, the fundamental voltage is given by 𝑉𝑉1 sin �𝜔𝜔𝑡𝑡 − 2𝜋𝜋
3
�, while for phase C, it 

can be written as 𝑉𝑉1 sin �𝜔𝜔𝑡𝑡 + 2𝜋𝜋
3
�.  

Now, when we turn our attention to the triplen harmonics, particularly the third harmonic, we can 

express the voltage for phase A's third harmonic as 𝑉𝑉𝑎𝑎𝑎𝑎3 = 𝑉𝑉3, where V3 is the amplitude of the 

third harmonic voltage. This amplitude can be accurately determined through Fourier analysis. 

Let’s explore the nature of the third harmonic voltages in a three-phase induction motor. We start 

with the expression for the third harmonic voltage for phase A, which can be represented as 𝑉𝑉𝐴𝐴𝐴𝐴3 =

𝑉𝑉3 sin(3𝜔𝜔𝑡𝑡). This indicates that the frequency of the third harmonic is three times that of the 

fundamental frequency.  

Moving on to phase B, the third harmonic voltage can be expressed as 𝑉𝑉𝐵𝐵𝐴𝐴3 = 𝑉𝑉3 sin �3𝜔𝜔𝑡𝑡 − 2𝜋𝜋
3
�. 

In essence, this maintains the same frequency, confirming that it is 𝑉𝑉3 sin(3𝜔𝜔𝑡𝑡) but with a phase 



shift. For phase C, we have 𝑉𝑉𝐶𝐶𝐴𝐴3 = 𝑉𝑉3 sin �3𝜔𝜔𝑡𝑡 + 2𝜋𝜋
3
�, which once again corresponds to 

𝑉𝑉3 sin(3𝜔𝜔𝑡𝑡) with a different phase shift. 

The crucial point to note here is that the third harmonic voltages, VAN3, VBN3, and VCN3, are 

essentially in phase with one another. This alignment means that when these voltages are applied, 

they do not create a rotating magnetic field. Consequently, the third harmonic voltage does not 

contribute to torque production in the motor. 

Now, let’s turn our attention to the positive sequence of voltages, which corresponds to the order 

a, b, c. We can similarly analyze the fifth and seventh harmonics. For the fifth harmonic, we can 

denote the voltages as VAN5, VBN5, and VCN5, which can be expressed as follows: 

• 𝑉𝑉𝐴𝐴𝐴𝐴5 = 𝑉𝑉5 sin(5𝜔𝜔𝑡𝑡) 

• 𝑉𝑉𝐵𝐵𝐴𝐴5 = 𝑉𝑉5 sin �5𝜔𝜔𝑡𝑡 − 2𝜋𝜋
3
� 

• 𝑉𝑉𝐶𝐶𝐴𝐴5 = 𝑉𝑉5 sin �5𝜔𝜔𝑡𝑡 + 2𝜋𝜋
3
� 

Upon simplifying the expressions for the fifth harmonic, we find that the voltage for phase B 

becomes 𝑉𝑉𝐵𝐵𝐴𝐴5 = 𝑉𝑉5 sin �5𝜔𝜔𝑡𝑡 + 2𝜋𝜋
3
�, while for phase C, it simplifies to 𝑉𝑉𝐶𝐶𝐴𝐴5 = 𝑉𝑉5 sin �5𝜔𝜔𝑡𝑡 − 2𝜋𝜋

3
�. 

This configuration results in what we refer to as a negative sequence, meaning the order of rotation 

is altered from a, b, c to a, c, b. Thus, the fifth harmonic voltages will create a rotating magnetic 

field in the opposite direction. 

In summary, this exploration highlights how various harmonics influence the electromagnetic 

fields within the air gap of the induction motor. In our next class, we will continue our discussion 

on the effects of these harmonics on the operation of induction motors, further deepening our 

understanding of this complex topic. So we will continue discussing this harmonics the effect of 

harmonics on the operation of induction motor in the next class. 
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	Let’s delve into the rotor current, denoted as ,𝐼-𝑟-′.. Now, what about the copper loss? The rotor copper loss, represented as ,𝑃-𝑟 𝑐𝑢., is essentially equal to the product of the rotor current and the actual rotor resistance. This resistance ca...
	In the context of an electric circuit, when we aim to derive the mechanical power, we need to incorporate the concept of slip, which is a mechanical variable. This aspect represents the mechanical output. Therefore, we can consider the resistance that...
	The rotor copper loss can be expressed as ,𝐼-𝑟-2.,𝑅-𝑟., and since we are dealing with a three-phase circuit, we multiply this value by 3. Consequently, we have the air gap power, with a portion allocated to the rotor copper loss, ,𝑃-𝑟 𝑐𝑢.. Thu...
	,𝑃-𝑚𝑒𝑐ℎ𝑎𝑛𝑖𝑐𝑎𝑙.=,𝑃-𝑔.−,𝑃-𝑟 𝑐𝑢.=3,𝐼-𝑟-2.,𝑅-𝑟.⋅,,1-𝑆..−3,𝐼-𝑟-2.,𝑅-𝑟-′..
	This can be simplified to:
	,𝑃-𝑚𝑒𝑐ℎ𝑎𝑛𝑖𝑐𝑎𝑙.=3,𝐼-𝑟-2.,𝑅-𝑟-′.⋅,,1−𝑆-𝑆...
	Now, let’s discuss how to determine the torque, because ultimately, our goal is to find the motor torque. The motor torque T can be calculated as:
	𝑇=,,𝑃-𝑚𝑒𝑐ℎ𝑎𝑛𝑖𝑐𝑎𝑙.-,𝜔-𝑚...
	Substituting in the expression for mechanical power, we have:
	𝑇=,3,𝐼-𝑟-2.,𝑅-𝑟-′.⋅,1−𝑆.-,𝜔-𝑚.⋅𝑆..
	By replacing the term for mechanical speed, we recall that:
	,𝜔-𝑚.=,1−𝑆.⋅,𝜔-𝑚𝑠..
	When we substitute this into our equation, the (1 - S) term cancels out, yielding:
	𝑇=,3,𝐼-𝑟-2.,𝑅-𝑟-′.⋅,𝜔-𝑚𝑠.-𝑆..
	This expression represents the torque of the induction motor. Now, let’s explore how we can write a more detailed expression for the torque.
	(Refer Slide Time: 11:06)
	The torque output, denoted as T, is expressed as:
	𝑇=,3,𝐼-𝑟-2.-,𝜔-𝑚𝑠..⋅,,𝑅-𝑟-′.-𝑆..
	Here, ,𝐼-𝑟-2. can be represented as 3⋅,,𝑉-2.-,,,𝑅-𝑠.+,,𝑅-𝑟-′.-𝑆..-2... This equation reflects our quest for the absolute value of Ir. Thus, we can express Ir2 in terms of the applied voltage V, the stator resistance Rs, and the rotor resistanc...
	,𝐼-𝑟-2.=,,𝑉-2.-,,,𝑅-𝑠.+,,𝑅-𝑟-′.-𝑆..-2.+,,,𝑋-𝑠.+,𝑋-𝑟-′..-2...
	We can substitute this back into our torque equation, which allows us to write the torque of the three-phase induction motor in a more detailed form:
	𝑇=,3⋅,,𝑉-2.-,,,𝑅-𝑠.+,,𝑅-𝑟-′.-𝑆..-2.+,,,𝑋-𝑠.+,𝑋-𝑟-′..-2..-,𝜔-𝑚𝑠..⋅,,𝑅-𝑟-′.-𝑆..
	This equation represents the average torque output of the three-phase induction motor.
	Next, to analyze the performance characteristics, we must determine if there is a maximum torque available. To find the maximum torque, we recognize that the only variable on the right-hand side of the equation is the slip S. The applied voltage, sync...
	Thus, to find the maximum torque, we set the derivative of the torque with respect to slip ,𝑑𝑇-𝑑𝑆. equal to zero:
	,𝑑𝑇-𝑑𝑆.=0.
	By performing this differentiation and simplifying the resulting expression, we can derive the slip at which maximum torque occurs, given by:
	,𝑆-𝑚𝑎𝑥 𝑇.=,,𝑅-𝑟-′.-,,𝑅-𝑠-2.+,,,𝑋-𝑠.+,𝑋-𝑟-′..-2....
	This equation provides the slip for maximum torque, where ,𝑆-𝑚𝑎𝑥 𝑇. can take on both positive and negative values.
	We find that the maximum slip is given by:
	,𝑆-𝑚𝑎𝑥 𝑇.=±,,𝑅-𝑟-′.-,,𝑅-𝑠-2.+,,,𝑋-𝑠.+,𝑋-𝑟-′..-2....
	This implies that there are both positive and negative slip values. In fact, an induction motor can operate with a positive slip, indicating that it is running at a speed slower than the synchronous speed, or it can also function with a negative slip,...
	Now, if we substitute this slip value into our previous torque equation, let’s refer to that as Equation 1, and we label our derived slip equation as Equation 2, we can determine the maximum torque Tmax.
	To express this mathematically, we can write:
	,𝑇-𝑚𝑎𝑥.=𝑇 at 𝑆=,𝑆-𝑚𝑎𝑥 𝑇..
	When we substitute 𝑆=,𝑆-𝑚𝑎𝑥 𝑇. into Equation 1, we arrive at the expression for maximum torque:
	,𝑇-𝑚𝑎𝑥.=,3,𝑉-2.-,𝑅-𝑠.±,,𝑅-𝑠-2.+,,,𝑋-𝑠.+,𝑋-𝑟-′..-2...⋅,1-2,𝜔-𝑚𝑠...
	Thus, the maximum value of torque can be represented as:
	,𝑇-𝑚𝑎𝑥.=,3,𝑉-2.-2,𝜔-𝑚𝑠..⋅,1-,𝑅-𝑠.±,,𝑅-𝑠-2.+,,,𝑋-𝑠.+,𝑋-𝑟-′..-2....
	With this equation, we can now proceed to plot the torque-slip characteristics of the induction motor. This plot will provide valuable insights into how torque varies with slip, offering a comprehensive understanding of the motor's performance across ...
	(Refer Slide Time: 15:48)
	If we were to illustrate the torque-slip or torque-speed characteristics, we can plot the data derived from Equation 1 to create a visual representation. On the X-axis, we will have the torque, while on the Y-axis, we will depict the speed. It's essen...
	Let’s identify some critical points on this graph. We will denote the no-load speed as ωm0, and here we will have the synchronous speed, which is represented as ωms. Typically, if we were to plot Equation 1 for various slip values, we would observe a ...
	The area where slip is less than 1 is referred to as the forward motoring region. This is the zone where the motor generally operates, known as forward motoring. If we were to increase the motor's speed beyond the synchronous speed, we would enter the...
	In this context, the section representing negative slip pertains to regenerative braking. When the motor operates within this range, it functions as a generator, and any energy produced will be fed back into the AC supply.
	Now, let’s consider the effect of changing the phase sequence of the motor. For instance, if the initial phase sequence is A, B, C, and we alter it to A, C, B, we effectively change the direction of the rotating magnetic field. In this case, instead o...
	In our analysis, we begin with the first quadrant, which represents the motoring operation of the induction motor. Moving to the second quadrant, we observe the characteristics associated with forward braking. This region is particularly notable for a...
	As we extend our examination into the fourth quadrant, we encounter the concept of reverse plugging. This completes the torque-speed characteristic curve for an induction motor, encompassing all operational modes: forward motoring, forward regenerativ...
	Now, let’s delve into the typical behavior of the motor. Generally, we supply the induction motor with a three-phase balanced supply. For instance, consider a scenario where the voltage is set at 400 volts; in this case, the phase voltage is 230 volts...
	(Refer Slide Time: 21:20)
	Let’s delve into the analysis of a three-phase induction motor powered by a non-sinusoidal supply, specifically one that contains harmonics. In this scenario, if we use an inverter to supply the motor, we may observe that the waveforms for phases A, B...
	Now, when we shift our focus to phase B, it is important to note that it lags phase A by 120 degrees. This results in a waveform for phase B that appears like this: [insert visual representation here]. The x-axis represents ω t. Furthermore, phase C i...
	To analyze these harmonics, we can employ a Fourier series, allowing us to separate the fundamental frequency from the third harmonic, fifth harmonic, seventh harmonic, and so on. The square wave will predominantly consist of all odd harmonics. This o...
	Due to this quarter-wave symmetry, the supply voltage will be rich in odd harmonics. For instance, let’s consider the voltage for phase A. The fundamental component can be expressed as ,𝑉-1.,sin-,𝜔𝑡... In the case of phase B, the fundamental voltag...
	Now, when we turn our attention to the triplen harmonics, particularly the third harmonic, we can express the voltage for phase A's third harmonic as ,𝑉-𝑎𝑛3.=,𝑉-3., where V3 is the amplitude of the third harmonic voltage. This amplitude can be acc...
	Let’s explore the nature of the third harmonic voltages in a three-phase induction motor. We start with the expression for the third harmonic voltage for phase A, which can be represented as ,𝑉-𝐴𝑁3.=,𝑉-3.,sin-,3𝜔𝑡... This indicates that the freq...
	Moving on to phase B, the third harmonic voltage can be expressed as ,𝑉-𝐵𝑁3.=,𝑉-3.,sin-,3𝜔𝑡−,2𝜋-3.... In essence, this maintains the same frequency, confirming that it is ,𝑉-3.,sin-,3𝜔𝑡.. but with a phase shift. For phase C, we have ,𝑉-𝐶𝑁...
	The crucial point to note here is that the third harmonic voltages, VAN3, VBN3, and VCN3, are essentially in phase with one another. This alignment means that when these voltages are applied, they do not create a rotating magnetic field. Consequently,...
	Now, let’s turn our attention to the positive sequence of voltages, which corresponds to the order a, b, c. We can similarly analyze the fifth and seventh harmonics. For the fifth harmonic, we can denote the voltages as VAN5, VBN5, and VCN5, which can...
	 ,𝑉-𝐴𝑁5.=,𝑉-5.,sin-,5𝜔𝑡..
	 ,𝑉-𝐵𝑁5.=,𝑉-5.,sin-,5𝜔𝑡−,2𝜋-3...
	 ,𝑉-𝐶𝑁5.=,𝑉-5.,sin-,5𝜔𝑡+,2𝜋-3...
	Upon simplifying the expressions for the fifth harmonic, we find that the voltage for phase B becomes ,𝑉-𝐵𝑁5.=,𝑉-5.,sin-,5𝜔𝑡+,2𝜋-3..., while for phase C, it simplifies to ,𝑉-𝐶𝑁5.=,𝑉-5.,sin-,5𝜔𝑡−,2𝜋-3....
	This configuration results in what we refer to as a negative sequence, meaning the order of rotation is altered from a, b, c to a, c, b. Thus, the fifth harmonic voltages will create a rotating magnetic field in the opposite direction.
	In summary, this exploration highlights how various harmonics influence the electromagnetic fields within the air gap of the induction motor. In our next class, we will continue our discussion on the effects of these harmonics on the operation of indu...

