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Operation of Induction Motor from Non-sinusoidal Supply 

Hello and welcome to this lecture on the fundamentals of electric drives! In our last session, we 

delved into the intriguing topic of how harmonics impact the performance of induction motors. 

We began our analysis of the various harmonics present in a typical non-sinusoidal waveform. 

Today, we will continue to explore this critical aspect of electric drives and its implications for 

motor operation. 
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Let’s continue from where we left off. Here, we have three square waves representing the output 

from a three-phase inverter. The first square wave is for phase A, and similarly, we have a 

corresponding square wave for phase B, which is shifted by 120∘ or 2𝜋𝜋
3

 radians behind phase A. 

Additionally, we have phase C, denoted as VCN, which is also a square wave, shifted from phase 

B by the same 120∘. 



Thus, the three phase voltages, VAN, VBN, and VCN, are all square waves supplied from a square 

wave inverter. Now, when we apply these three-phase voltages to an induction motor, we see that 

the motor consists of three-phase windings. These windings are designated as phase A, phase B, 

and phase C in the stator. For illustrative purposes, let’s assume we have a neutral point in our 

setup. 

As we apply the voltages between one phase and the neutral, we have the three-phase voltages 

active in the system. The rotor, which could be a short-circuited rotor, typically takes the form of 

a cage rotor or squirrel cage rotor.  

When these three-phase voltages are applied to the stator of the induction motor, the resulting 

square waveforms contain numerous harmonics. Importantly, we can easily deduce that these 

square waveforms exhibit only odd harmonics. By employing Fourier analysis, we can break down 

these waveforms into their various frequency components, revealing the fundamental frequency 

and all the associated harmonics. 

Now, let’s examine the first harmonic, which is the fundamental component. We can denote this 

as VAN1, represented by the expression 𝑉𝑉1 sin(𝜔𝜔𝑡𝑡). Moving on to phase B, the fundamental for this 

phase, or the first harmonic, can be expressed as 𝑉𝑉𝐵𝐵𝐵𝐵1 = 𝑉𝑉1 sin �𝜔𝜔𝑡𝑡 − 2𝜋𝜋
3
�. This shift accounts for 

the 120∘ phase difference from phase A. Similarly, for phase C, we have the expression for the 

fundamental component as 𝑉𝑉𝐶𝐶𝐵𝐵1 = 𝑉𝑉1 sin �𝜔𝜔𝑡𝑡 − 4𝜋𝜋
3
�, which can also be rewritten as 𝑉𝑉1 sin �𝜔𝜔𝑡𝑡 +

2𝜋𝜋
3
�. 

Now that we’ve covered the fundamental components, we can employ Fourier analysis to uncover 

the various harmonic components present in our waveforms. In this case, we are only dealing with 

odd harmonics due to the quarter-wave symmetry of the square wave.  

Let’s discuss the third harmonic next. The third harmonic can be expressed as 𝑉𝑉𝐴𝐴𝐵𝐵3 = 𝑉𝑉3 sin(3𝜔𝜔𝑡𝑡). 

For phase B, this can be represented as 𝑉𝑉𝐵𝐵𝐵𝐵3 = 𝑉𝑉3 sin �3𝜔𝜔𝑡𝑡 − 2𝜋𝜋
3
�. Since phase B is shifted by 120∘ 

from phase A, this can be simplified to 𝑉𝑉𝐵𝐵𝐵𝐵3 = 𝑉𝑉3 sin(3𝜔𝜔𝑡𝑡). For phase C, the third harmonic is 

expressed as 𝑉𝑉𝐶𝐶𝐵𝐵3 = 𝑉𝑉3 sin �3𝜔𝜔𝑡𝑡 + 2𝜋𝜋
3
�.  



If we place this in parentheses, we note that 𝑉𝑉𝐶𝐶𝐵𝐵3 = 𝑉𝑉3 sin(3𝜔𝜔𝑡𝑡 + 2𝜋𝜋). Since the sine function is 

periodic with a period of 2π, we can simplify this to just 𝑉𝑉3 sin(3𝜔𝜔𝑡𝑡).  

What we observe here is that the fundamental component represents a positive sequence, where 

the phase sequence follows the order of A, B, and C. This pattern repeats, creating a sequence of 

A, B, C, and so on.  

Now, let’s turn our attention to the third harmonic. When we analyze it, we notice that all three 

phases, A, B, and C, share the same phase of 3ω t. Consequently, we can conclude that these are 

in phase with each other, indicating that this represents a zero-sequence component. This means 

that phases A, B, and C are all aligned in the same phase.  

Next, let’s take a closer look at the fifth harmonic, which, like the others, will also consist of only 

odd harmonics present in our analysis. 
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The fifth harmonic has a distinct characteristic, represented as VAN5. We can employ Fourier 

transform techniques to determine the amplitude of the fifth harmonic, denoted as 𝑉𝑉5 sin(5𝜔𝜔𝑡𝑡). 

For phase B, the expression for the amplitude of the fifth harmonic is 𝑉𝑉𝐵𝐵𝐵𝐵5 = 𝑉𝑉5 sin �5𝜔𝜔𝑡𝑡 − 2𝜋𝜋
3
�. 

Simplifying this yields 𝑉𝑉𝐵𝐵𝐵𝐵5 = 𝑉𝑉5 sin �5𝜔𝜔𝑡𝑡 − 10𝜋𝜋
3
�, which, upon further simplification, resolves to 



𝑉𝑉5 sin(5𝜔𝜔𝑡𝑡) due to the periodic nature of the sine function. 

Now, for phase C, the fifth harmonic voltage can be expressed as 𝑉𝑉𝐶𝐶𝐵𝐵5 = 𝑉𝑉5 sin �5𝜔𝜔𝑡𝑡 + 2𝜋𝜋
3
�. This 

indicates that phase C is shifted 120∘ ahead of 5ω t. Thus, we can rewrite this as 𝑉𝑉𝐶𝐶𝐵𝐵5 =

𝑉𝑉5 sin �5𝜔𝜔𝑡𝑡 − 2𝜋𝜋
3
�. 

At this point, we observe that the fifth harmonic represents a negative sequence component. This 

is evident because phase B is leading phase A by 2𝜋𝜋
3

, while phase C is lagging behind phase A by 

the same amount. Therefore, the phase sequence for the fifth harmonic is A, C, B.  

Now, let’s move on to the seventh harmonic. The voltage for the seventh harmonic can be denoted 

as 𝑉𝑉𝐴𝐴𝐵𝐵7 = 𝑉𝑉7 sin(7𝜔𝜔𝑡𝑡). For phase B, the expression becomes 𝑉𝑉𝐵𝐵𝐵𝐵7 = 𝑉𝑉7 sin �7𝜔𝜔𝑡𝑡 − 2𝜋𝜋
3
�, which 

simplifies to 𝑉𝑉𝐵𝐵𝐵𝐵7 = 𝑉𝑉7 sin �7𝜔𝜔𝑡𝑡 − 14𝜋𝜋
3
�. When we simplify this further, it becomes 𝑉𝑉7 sin �7𝜔𝜔𝑡𝑡 −

2𝜋𝜋
3
�. 

For phase C, we express the seventh harmonic voltage as 𝑉𝑉𝐶𝐶𝐵𝐵7 = 𝑉𝑉7 sin �7𝜔𝜔𝑡𝑡 + 2𝜋𝜋
3
�. Simplifying 

this, we have 𝑉𝑉𝐶𝐶𝐵𝐵7 = 𝑉𝑉7 sin �7𝜔𝜔𝑡𝑡 + 2𝜋𝜋
3
�, ensuring that we keep our phase angles within the 0 to 

360∘ range.  

By analyzing the various voltages of the seventh harmonic across phases A, B, and C, we find that 

the phase sequence follows A, with phase B lagging behind phase A by 2𝜋𝜋
3

 or 120∘. This further 

highlights the relationships and dynamics present in the harmonic analysis of the induction motor. 

Similarly, we find that phase C is leading phase A by 2𝜋𝜋
3

 or 120∘. In other words, we can also 

express it as phase C lagging behind phase A by 4𝜋𝜋
3

 or 240∘. Thus, in this scenario, the phase 

sequence remains positive, consistent with the fundamental sequence, which is A followed by B, 

followed by C. 

Now, let’s discuss a general formula for identifying harmonic orders. For any positive sequence 

component, if m represents the order of the harmonic, we can state that: 



𝑚𝑚 =  6𝑘𝑘 +  1 

Here, k can take values from 0, 1, 2, and so on. For negative sequence components, the relationship 

changes to: 

𝑚𝑚 =  6𝑘𝑘 −  1 

In this case, k cannot be 0; it must start from 1 and can continue with 2, 3, etc. When referring to 

the fundamental harmonic, we note that it represents the case where m = 0. Therefore, for 

harmonics, we can identify them as 1, 2, and so forth. 

To summarize, when we have m = 6k - 1, we derive negative sequence components or harmonics 

that produce a negative sequence field. Conversely, when m = 6k + 1, we obtain positive sequence 

voltages, defining the order of the harmonics in this context. 

Now, if we revisit the discussion regarding the triplen harmonics, we note that they are expressed 

by the formula: 

𝑚𝑚 =  3𝑘𝑘 

where k can take values of 1, 2, 3, and so on. It’s important to highlight that triplen harmonics are 

all in phase, and they represent zero sequence voltages.  

In our analysis, we've observed that certain harmonics produce zero sequence components, while 

others generate positive or negative sequence components. Out of these, we categorize the three 

sequence components as positive, negative, and zero, each playing a critical role in the overall 

behavior of the induction motor system. 

The zero-sequence component does not produce a rotating field, which means it does not 

contribute to torque production. In essence, all harmonics that belong to the zero-sequence 

category are unable to participate in generating torque. Now, let’s explore what occurs when the 

rotor is rotating at a speed of ωm, while we have a stator field rotating at its own speed. 

The stator field moves from point A to point B to point C; this is how we visualize our stator field 

in motion. We refer to this as the synchronous speed, denoted as ωms. Meanwhile, the rotor speed 



follows this pattern as it rotates. To define the slip, we can express it mathematically as: 

Slip =
𝜔𝜔𝑚𝑚𝑚𝑚 − 𝜔𝜔𝑚𝑚

𝜔𝜔𝑚𝑚𝑚𝑚
. 

This definition of slip is applicable when we have only one frequency present, specifically a 

positive sequence component. However, when we introduce both positive and negative sequence 

components, we encounter different slips associated with each sequence component, as well as 

variations for different harmonics. This complexity highlights the intricate dynamics at play in the 

operation of induction motors, particularly in scenarios where multiple frequency components are 

present. 
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Now, let’s delve into what occurs to the field when we apply the fifth harmonic component. When 

the fifth harmonic is introduced, it generates a negative sequence component, resulting in negative 

sequence voltages. This means that the speed of the rotating field undergoes a significant 

transformation.  

To visualize this, consider our stator phases: A, B, and C. When we apply the fifth harmonic 

voltage, the rotation of the field progresses from phase A to phase C and then to phase B. This 

rotation follows a clockwise direction, indicating a negative rotation. We can express this 



rotational speed as -5ωms, which represents the speed of the rotating field. Meanwhile, the rotor is 

functioning according to the normal convention, rotating at the speed ωm. 

Now, let's define the slip concerning the fifth harmonic. In this scenario, we multiply by 5 because 

we are dealing with a negative sequence component. Therefore, the slip is defined as: 

Slip =
𝜔𝜔𝑚𝑚𝑚𝑚 − 𝜔𝜔𝑚𝑚

𝜔𝜔𝑚𝑚𝑚𝑚
. 

In this case, it simplifies to: 

Slip =
5𝜔𝜔𝑚𝑚𝑚𝑚 − 𝜔𝜔𝑚𝑚

5𝜔𝜔𝑚𝑚𝑚𝑚
. 

This indicates that the rotation is in the negative direction, giving us -ωm. By definition, this can 

be expressed as 𝜔𝜔𝑚𝑚𝑚𝑚 − 𝜔𝜔𝑚𝑚 divided by the synchronous speed, leading us to: 

Slip =
5𝜔𝜔𝑚𝑚𝑚𝑚 + 𝜔𝜔𝑚𝑚

5𝜔𝜔𝑚𝑚𝑚𝑚
. 

To better analyze this, we can replace ωm using our previous expressions. By making simple 

mathematical adjustments, we find that: 

𝜔𝜔𝑚𝑚 = (1 − 𝑠𝑠)𝜔𝜔𝑚𝑚𝑚𝑚, 

where ωms represents the synchronous speed, and ωm is the rotor speed.  

Now, substituting this value of ωm into our equation yields: 

Slip =
5𝜔𝜔𝑚𝑚𝑚𝑚 + (1 − 𝑠𝑠)𝜔𝜔𝑚𝑚𝑚𝑚

5𝜔𝜔𝑚𝑚𝑚𝑚
. 

After performing some cancellations, the ωms terms simplify, resulting in: 

Slip =
6 − 𝑠𝑠

5
. 

This expression captures the slip for the fifth harmonic component. By analyzing this equation, we 



can ascertain the value of slip from the normal rotation, demonstrating that for the fifth harmonic 

component, the slip is expressed as: 

Slip =
6 − 𝑠𝑠

5
. 

Now, let’s delve into the details regarding the seventh harmonic component. When we analyze the 

slip associated with this harmonic, we observe that it yields a value that is close to 1, typically 

hovering around 1.1, which suggests it is slightly greater than 1 but not excessively distant from 

it.  

Now, focusing on the seventh harmonic component, we recognize that it serves as a positive 

sequence component. This means that when we apply these positive sequence voltages to the stator 

of the induction motor, comprising phases A, B, and C, along with a neutral point, the rotor, 

designed with short-circuited bars in a squirrel cage configuration, will respond accordingly. 

As the seventh harmonic voltage is introduced, the stator field rotates from phase A to phase B 

and then to phase C. The rotation of the seventh harmonic field occurs at a frequency of 7 ⋅ 𝜔𝜔𝑚𝑚𝑚𝑚, 

where ωms represents the synchronous speed. The rotor generally rotates in the same direction due 

to the influence of the positive sequence component, which aligns with the fundamental 

component. 

Now, let’s calculate the slip for the seventh harmonic voltage. The slip is defined as the difference 

between the synchronous speed and the rotor speed, divided by the synchronous speed. Here, the 

synchronous speed is 7 ⋅ 𝜔𝜔𝑚𝑚𝑚𝑚, so we express it mathematically as follows: 

Slip =
7 ⋅ 𝜔𝜔𝑚𝑚𝑚𝑚 − 𝜔𝜔𝑚𝑚

7 ⋅ 𝜔𝜔𝑚𝑚𝑚𝑚
. 

We can substitute ωm using the expression 𝜔𝜔𝑚𝑚 = (1 − 𝑠𝑠) ⋅ 𝜔𝜔𝑚𝑚𝑚𝑚. When we do this substitution, we 

have: 

Slip =
7 ⋅ 𝜔𝜔𝑚𝑚𝑚𝑚 − (1 − 𝑠𝑠) ⋅ 𝜔𝜔𝑚𝑚𝑚𝑚

7 ⋅ 𝜔𝜔𝑚𝑚𝑚𝑚
. 

Upon simplification, this yields: 



Slip =
7 − (1 − 𝑠𝑠)

7
=

6 + 𝑠𝑠
7

. 

This value, 6+𝑚𝑚
7

, indicates that the slip for the seventh harmonic component is still a quantity that 

is less than 1, reaffirming that it is not far removed from unity. In fact, it remains quite close to 1.  

Therefore, we conclude that the slip for the higher-order harmonics, such as the seventh harmonic, 

tends to be close to 1, paralleling the slip observed for the fifth harmonic component. 
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We can derive a general formula to determine the behavior of any harmonic m. For the mth 

harmonic, we express this as follows: 

Slip =
𝑚𝑚 ⋅ 𝜔𝜔𝑚𝑚𝑚𝑚 ± 𝜔𝜔𝑚𝑚

𝑚𝑚 ⋅ 𝜔𝜔𝑚𝑚𝑚𝑚
. 

Here, the plus sign corresponds to the negative sequence component, while the minus sign is used 

for the positive sequence component. Notably, for harmonics of higher order, the slip tends to be 

close to 1. Now, let's explore the implications of this on the operation of the induction motor. 

To analyze the effects on the induction motor's performance, we need to utilize the equivalent 

circuit specifically for the mth order harmonic. It’s essential to clarify that our discussion will not 

cover the fundamental component but will focus exclusively on the mth order harmonic. The 



frequency associated with this harmonic is m times the base frequency f. 

Next, we construct the equivalent circuit, which includes elements such as the stator resistance, 

the stator leakage reactance, the rotor leakage reactance, and the rotor resistance. In this equivalent 

circuit, the stator resistance is denoted for the mth order harmonic, and we represent the reactance 

as Xs. However, since we are dealing with the mth order harmonic, the reactance will adjust to 𝑚𝑚 ⋅

𝑋𝑋𝑚𝑚. 

For the rotor, the reactance is denoted as 𝑋𝑋𝑟𝑟′ , which becomes 𝑚𝑚 ⋅ 𝑋𝑋𝑟𝑟′  for this context. Regarding the 

rotor resistance R, we refer it from the stator side, adjusting it to account for the slip sm associated 

with the mth order harmonic. 

Additionally, we need to consider the magnetizing reactance, which we denote as 𝑚𝑚 ⋅ 𝑋𝑋𝑚𝑚, and we 

include a j to signify that this is indeed a reactance. The input voltage across the phases is denoted 

as Vm. 

In this configuration, we identify the input current as Ism and the rotor current as Irm. It’s crucial to 

note that when m is a large quantity, the equivalent circuit predominantly behaves as a reactive 

circuit. This indicates that the reactive components significantly influence the overall performance 

of the induction motor under these harmonic conditions. 

The magnetizing reactance is indeed substantial, allowing us to represent it primarily as a 

reactance. We previously discussed that the slip sm is close to 1, indicating that the slip is relatively 

high in this scenario. Given that the rotor resistance is a small quantity, we can neglect the 

resistance of the circuit in comparison to the reactance. Furthermore, since we are dealing with a 

reactive circuit, the power factor becomes quite poor. 

This poor power factor results in negligible torque production; therefore, the average torque 

generated is very minimal due to this unfavorable power factor. Consequently, harmonics do not 

significantly contribute to any average torque production. As a result, we can simplify this 

equivalent circuit to primarily consist of the reactance of the stator and the reactance of the rotor, 

while we can disregard the magnetizing reactance due to its considerable size.  

In this simplified model, the input voltage is denoted as Vm, and we can express the current Ism as 



follows: 

𝐼𝐼𝑚𝑚𝑚𝑚 =
𝑉𝑉𝑚𝑚

𝑚𝑚 ⋅ 𝑋𝑋𝑚𝑚 + 𝑋𝑋𝑟𝑟′
, 

where we focus on the magnitude of the current.  

Now, what is the effect of these harmonics? The presence of harmonics leads to an increase in the 

losses within the system. These losses rise significantly, and additionally, we experience torque 

pulsations. The interaction of various rotating fields creates pulsating torque, further complicating 

the motor's operation. 

In summary, the effects of harmonics on the operation of the induction motor include increased 

losses and pulsating torque. It's important to note that there is very little average torque 

contribution from these harmonic components. Instead, the harmonic components primarily 

contribute to heating the motor by elevating both core losses and copper losses. Consequently, the 

motor must be de-rated when the input supply is not sinusoidal. So we stop here today lecture we 

will continue out discussion in the next lecture. 
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	where k can take values of 1, 2, 3, and so on. It’s important to highlight that triplen harmonics are all in phase, and they represent zero sequence voltages.
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	The zero-sequence component does not produce a rotating field, which means it does not contribute to torque production. In essence, all harmonics that belong to the zero-sequence category are unable to participate in generating torque. Now, let’s expl...
	The stator field moves from point A to point B to point C; this is how we visualize our stator field in motion. We refer to this as the synchronous speed, denoted as ωms. Meanwhile, the rotor speed follows this pattern as it rotates. To define the sli...
	Slip=,,𝜔-𝑚𝑠.−,𝜔-𝑚.-,𝜔-𝑚𝑠...
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	(Refer Slide Time: 17:11)
	Now, let’s delve into what occurs to the field when we apply the fifth harmonic component. When the fifth harmonic is introduced, it generates a negative sequence component, resulting in negative sequence voltages. This means that the speed of the rot...
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	Now, let's define the slip concerning the fifth harmonic. In this scenario, we multiply by 5 because we are dealing with a negative sequence component. Therefore, the slip is defined as:
	Slip=,,𝜔-𝑚𝑠.−,𝜔-𝑚.-,𝜔-𝑚𝑠...
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	where ωms represents the synchronous speed, and ωm is the rotor speed.
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	After performing some cancellations, the ωms terms simplify, resulting in:
	Slip=,6−𝑠-5..
	This expression captures the slip for the fifth harmonic component. By analyzing this equation, we can ascertain the value of slip from the normal rotation, demonstrating that for the fifth harmonic component, the slip is expressed as:
	Slip=,6−𝑠-5..
	Now, let’s delve into the details regarding the seventh harmonic component. When we analyze the slip associated with this harmonic, we observe that it yields a value that is close to 1, typically hovering around 1.1, which suggests it is slightly grea...
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	This value, ,6+𝑠-7., indicates that the slip for the seventh harmonic component is still a quantity that is less than 1, reaffirming that it is not far removed from unity. In fact, it remains quite close to 1.
	Therefore, we conclude that the slip for the higher-order harmonics, such as the seventh harmonic, tends to be close to 1, paralleling the slip observed for the fifth harmonic component.
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	We can derive a general formula to determine the behavior of any harmonic m. For the mth harmonic, we express this as follows:
	Slip=,𝑚⋅,𝜔-𝑚𝑠.±,𝜔-𝑚.-𝑚⋅,𝜔-𝑚𝑠...
	Here, the plus sign corresponds to the negative sequence component, while the minus sign is used for the positive sequence component. Notably, for harmonics of higher order, the slip tends to be close to 1. Now, let's explore the implications of this ...
	To analyze the effects on the induction motor's performance, we need to utilize the equivalent circuit specifically for the mth order harmonic. It’s essential to clarify that our discussion will not cover the fundamental component but will focus exclu...
	Next, we construct the equivalent circuit, which includes elements such as the stator resistance, the stator leakage reactance, the rotor leakage reactance, and the rotor resistance. In this equivalent circuit, the stator resistance is denoted for the...
	For the rotor, the reactance is denoted as ,𝑋-𝑟-′., which becomes 𝑚⋅,𝑋-𝑟-′. for this context. Regarding the rotor resistance R, we refer it from the stator side, adjusting it to account for the slip sm associated with the mth order harmonic.
	Additionally, we need to consider the magnetizing reactance, which we denote as 𝑚⋅,𝑋-𝑚., and we include a j to signify that this is indeed a reactance. The input voltage across the phases is denoted as Vm.
	In this configuration, we identify the input current as Ism and the rotor current as Irm. It’s crucial to note that when m is a large quantity, the equivalent circuit predominantly behaves as a reactive circuit. This indicates that the reactive compon...
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	This poor power factor results in negligible torque production; therefore, the average torque generated is very minimal due to this unfavorable power factor. Consequently, harmonics do not significantly contribute to any average torque production. As ...
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	where we focus on the magnitude of the current.
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