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Hello, and welcome to this lecture on the fundamentals of electric drives. In our previous session, 

we discussed the effects of harmonics on the operation of an induction motor, and today, we will 

continue exploring that topic in further detail. Let's build on what we've covered and deepen our 

understanding of how harmonics impact motor performance.  
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As we've previously discussed, harmonics primarily increase the losses in the motor and introduce 

pulsating torque, but they do not contribute to any significant average torque. In fact, the 

contribution to average torque from harmonics is negligible, meaning that the overall average 

torque remains very small. Now, when the motor is powered by a non-sinusoidal supply, 

calculating the total current becomes essential. The total current will be the sum of the fundamental 



current along with the various harmonic components. Each harmonic adds its own component to 

the overall current, which collectively influences the motor's performance. 
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So, when harmonics are present in the system, the total stator current can be represented as the 

root mean square (RMS) current, denoted as 𝐼𝐼rms. The square of the total RMS current is equal to 

the square of the fundamental component plus the sum of the squares of the various harmonic 

components. Mathematically, we can express this as: 

𝐼𝐼rms
2 = 𝐼𝐼𝑠𝑠2 = 𝐼𝐼𝑠𝑠12 + � 𝐼𝐼𝑚𝑚2

𝑚𝑚=3,5,9,11,…

 

where Is1 represents the fundamental component, and Im represents the harmonic components. 

Now, the configuration of the stator plays an important role in determining the behavior of these 

harmonics. If the stator is delta-connected, meaning the windings are connected in a delta 

configuration, all harmonics, including the triplen harmonics (multiples of 3 like 3rd, 9th, 15th), 

can circulate within the stator. These triplen harmonics will flow through the delta configuration, 

creating circulating currents that do not require a neutral path. 

However, if the stator is star-connected, meaning the windings are connected in a star (or wye) 



configuration, there is no path for triplen harmonics to flow. This is because triplen harmonics are 

co-phasal, requiring a neutral path to circulate. In the absence of a neutral connection in a star-

connected stator, these triplen harmonics are effectively blocked, and only the non-triplen odd 

harmonics, like the 5th, 7th, and 11th, will contribute to the stator current. 

For the star-connected stator, the total RMS current can be represented as: 

𝐼𝐼rms
2 = 𝐼𝐼𝑠𝑠12 + � 𝐼𝐼𝑚𝑚2

𝑚𝑚=5,7,11,…

 

To find the total harmonic current, we must calculate the equivalent harmonic circuit for each 

harmonic, sum the squares of the harmonic components, and take the square root. This will give 

us the total RMS current, which is inevitably higher than the fundamental component alone. As a 

result, this increased current causes additional losses in the motor, leading to reduced efficiency 

and the need for de-rating the motor. 

De-rating means the motor cannot supply its full rated power due to increased losses from 

harmonic currents, especially core and copper losses. Furthermore, the interaction between 

different harmonics (e.g., the 7th harmonic rotating in the forward direction and the 5th harmonic 

in the backward direction) generates pulsating torque. This pulsating torque, combined with the 

fundamental component, leads to noisy operation of the motor. 

Lastly, when discussing induction motors, it is essential to consider the impact of an unbalanced 

supply voltage. While we typically assume that the stator is supplied with balanced three-phase 

voltages, real-world scenarios often involve unbalanced supplies. The effect of such unbalanced 

voltages on motor operation is significant, and this is what we will delve into next. 

The operation of an induction motor under unbalanced voltage conditions introduces some critical 

effects on the system. Let's imagine we have the stator of the induction motor, and the motor is 

being supplied by unbalanced voltages across phases A, B, and C. This means that the voltages 

are not perfectly shifted by 120° from each other, and their magnitudes might not be the same. So, 

instead of balanced supply voltages, we have an unbalanced set, with the voltages across each 

phase denoted as Va, Vb, and Vc. 
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When the supply voltage is unbalanced, what happens? We can break this unbalanced voltage 

system into three distinct components:  

1. Positive Sequence Component: These voltages correspond to a balanced three-phase set that 

rotates in the normal direction (A → B → C). 

2. Negative Sequence Component: These voltages form a balanced set that rotates in the opposite 

direction (A → C → B). 

3. Zero Sequence Component: Here, the voltages in all three phases are in phase, meaning they 

are co-phasal. 

Now, breaking down these components: 

• Positive Sequence Component: For phase A, we denote this as 𝑉𝑉pa, for phase B as 𝑉𝑉pb, and 

for phase C as 𝑉𝑉pc. 

• Negative Sequence Component: Similarly, we have 𝑉𝑉na, 𝑉𝑉nb, and 𝑉𝑉nc for phases A, B, and 

C, respectively. 

• Zero Sequence Component: These are represented as 𝑉𝑉0a, 𝑉𝑉0b, and 𝑉𝑉0c, and all of them are 

equal because they are co-phasal. 



So, even though the original voltage system is unbalanced, we can express it as the sum of these 

positive, negative, and zero sequence components. For instance, the voltage Va of phase A can be 

written as the sum of the positive, negative, and zero sequence components for that phase: 

𝑉𝑉𝑎𝑎 = 𝑉𝑉pa + 𝑉𝑉na + 𝑉𝑉0a 

Similarly, for phase B and phase C: 

𝑉𝑉𝑏𝑏 = 𝑉𝑉pb + 𝑉𝑉nb + 𝑉𝑉0b 

𝑉𝑉𝑐𝑐 = 𝑉𝑉pc + 𝑉𝑉nc + 𝑉𝑉0c 

Now, focusing on the sequence of rotations: 

• The positive sequence follows the usual sequence of A → B → C, with phase B lagging 

behind phase A by 120°, and phase C lagging behind phase B by another 120°.  

• The negative sequence, on the other hand, reverses the direction of rotation. Here, phase C 

lags behind phase A by 120°, and phase B lags behind phase C by another 120°. So, the 

sequence is A → C → B, rather than A → B → C. 

• The zero sequence is co-phasal, meaning all phases (A, B, and C) are in the same phase, 

rotating together without any phase shift. 

We can further describe this mathematically by introducing the operator α, which is a rotation 

operator defined as: 

𝛼𝛼 = 𝑒𝑒𝑗𝑗
2𝜋𝜋
3  

This represents a 120° phase shift. Using α, we can express the phase relationships. For example, 

phase B can be obtained by rotating phase A by 240° (i.e., α2), and phase C can be expressed as 

another rotation by α. 

Finally, for the zero sequence component, because 𝑉𝑉0a = 𝑉𝑉0b = 𝑉𝑉0c, there is no distinction between 

the phases, they all carry the same voltage. 

The voltage V0a is the same as V0b and V0c, meaning all zero-sequence components are identical. 



Now, let's look at the third equation in this sequence analysis. It involves α Vpa for Vc, plus α2 Vna, 

and V0a. From this equation, we can determine the sequence components Vpa, Vna, and V0a, which 

represent the positive, negative, and zero sequence components, respectively. 

So, after analyzing the set of equations, we can rearrange and solve to obtain the individual 

sequence components. When simplified, the results are as follows: 

The positive sequence component Vpa is given by: 

𝑉𝑉𝑝𝑝𝑎𝑎 =
1
3

(𝑉𝑉𝑎𝑎 + 𝛼𝛼𝑉𝑉𝑏𝑏 + 𝛼𝛼2𝑉𝑉𝑐𝑐) 

The negative sequence component Vna is: 

𝑉𝑉𝑛𝑛𝑎𝑎 =
1
3

(𝑉𝑉𝑎𝑎 + 𝛼𝛼2𝑉𝑉𝑏𝑏 + 𝛼𝛼𝑉𝑉𝑐𝑐) 

The zero sequence component V0a is: 

𝑉𝑉0𝑎𝑎 =
1
3

(𝑉𝑉𝑎𝑎 + 𝑉𝑉𝑏𝑏 + 𝑉𝑉𝑐𝑐) 

These equations help us decompose an unbalanced set of voltages into positive, negative, and zero 

sequence components. This is essential because when we have an unbalanced voltage system, it's 

difficult to directly determine its impact on the induction motor’s operation. By using sequence 

components, we break the unbalanced voltages Va, Vb, and Vc into their respective components 

and find the sequence voltages using the three equations described above. 

To explain further:  

• The first equation gives us the positive sequence component using Va + α Vb + α2 Vc, 

representing the normal rotating field (A → B → C). 

• The second equation gives us the negative sequence component as Va + α2 Vb + α Vc, 

representing the opposite rotating field (A → C → B). 

• The third equation gives us the zero sequence component as Va + Vb + Vc, which is co-

phasal and does not contribute to rotation. 



These three sequence components are applied to the induction motor. Since we assume a linear 

system (ignoring the effects of saturation), we can apply the principle of superposition. This means 

we can treat the voltages independently and analyze the effect of each sequence component on the 

motor’s operation. 

Now, we know that the zero sequence component does not contribute to torque production because 

it does not create a rotating field. As a result, we can eliminate the zero sequence component from 

further consideration and focus solely on the positive and negative sequence components. These 

two are the ones that influence the motor's operation, particularly during starting and normal 

functioning. 
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Let's now examine the positive sequence component in more detail. When we apply the positive 

sequence component voltage, the equivalent circuit remains the same as the standard circuit used 

for analyzing the induction motor. This circuit consists of the stator resistance, stator reactance, 

rotor reactance, and rotor resistance. In this case, we are applying Vp, which is the phase voltage, 

across the stator.  

In this equivalent circuit, we have: 

• The stator resistance Rs, 



• The stator reactance Xs, 

• The rotor resistance Rr', and 

• The rotor reactance Xr'. 

The slip associated with the positive sequence component is denoted as sp, which is essentially the 

same as the normal slip of the induction motor. The positive sequence voltage generates a positive 

sequence rotating field, and the synchronous speed for this field is ωms, the same as the 

synchronous speed of the induction motor.  

The slip for the positive sequence component is given by: 

𝑠𝑠𝑝𝑝 =
𝜔𝜔𝑚𝑚𝑠𝑠 − 𝜔𝜔𝑚𝑚

𝜔𝜔𝑚𝑚𝑠𝑠
 

where ωms is the synchronous speed, and ωm is the rotor speed. Since ωms = ωmsp, this simplifies to 

the standard slip s, as expected for the positive sequence component. 

Now, we can derive the rotor current Irp for the positive sequence component. This current is given 

by the following expression: 

𝐼𝐼𝑟𝑟𝑝𝑝 =
𝑉𝑉𝑝𝑝

𝑅𝑅𝑠𝑠 + 𝑅𝑅𝑟𝑟′
𝑠𝑠𝑝𝑝

+ 𝑗𝑗(𝑋𝑋𝑠𝑠 + 𝑋𝑋𝑟𝑟′)
 

Next, the torque for the positive sequence component can be calculated. The expression for torque 

is: 

𝑇𝑇𝑝𝑝 =
3𝐼𝐼𝑟𝑟𝑝𝑝2 𝑅𝑅𝑟𝑟′

𝑠𝑠𝑝𝑝𝜔𝜔𝑚𝑚𝑠𝑠
 

Substituting Irp into the equation, the torque becomes: 

𝑇𝑇𝑝𝑝 =
3𝑉𝑉𝑝𝑝2

�𝑅𝑅𝑠𝑠 + 𝑅𝑅𝑟𝑟′
𝑠𝑠𝑝𝑝
�
2

+ (𝑋𝑋𝑠𝑠 + 𝑋𝑋𝑟𝑟′)2
⋅
𝑅𝑅𝑟𝑟′

𝜔𝜔𝑚𝑚𝑠𝑠
 

Since the torque produced by the positive sequence component is positive, it contributes to the 



normal operation of the induction motor. 

Now, let's consider the negative sequence component. When we apply the negative sequence 

component voltage, we use a similar equivalent circuit as before. However, this time the sequence 

is negative. The negative sequence component generates a field that rotates in the opposite 

direction compared to the positive sequence field.  

In this case, the synchronous speed of the negative sequence field is -ωms, i.e., it rotates in the 

reverse direction. Therefore, the slip for the negative sequence component is: 

𝑠𝑠𝑛𝑛 =
𝜔𝜔𝑚𝑚𝑠𝑠 − 𝜔𝜔𝑚𝑚

𝜔𝜔𝑚𝑚𝑠𝑠
 

Substituting ωms = -ωms into the equation, we get: 

𝑠𝑠𝑛𝑛 =
−𝜔𝜔𝑚𝑚𝑠𝑠 − 𝜔𝜔𝑚𝑚

−𝜔𝜔𝑚𝑚𝑠𝑠
=
𝜔𝜔𝑚𝑚𝑠𝑠 + 𝜔𝜔𝑚𝑚

𝜔𝜔𝑚𝑚𝑠𝑠
 

This simplifies to: 

𝑠𝑠𝑛𝑛 = 2 − 𝑠𝑠 

Thus, the slip for the negative sequence component is 2 - s. 

The rotor current for the negative sequence component, Irn, can now be expressed as: 

𝐼𝐼𝑟𝑟𝑛𝑛 =
𝑉𝑉𝑛𝑛

𝑅𝑅𝑠𝑠 + 𝑅𝑅𝑟𝑟′
2 − 𝑠𝑠𝑛𝑛

+ 𝑗𝑗(𝑋𝑋𝑠𝑠 + 𝑋𝑋𝑟𝑟′)
 

By analyzing both the positive and negative sequence components, we can better understand how 

each sequence affects the operation of the induction motor. The positive sequence contributes to 

normal torque production, while the negative sequence, due to its opposite rotating field and 

different slip, can cause undesirable effects such as increased losses and reduced motor efficiency. 

This analysis highlights the importance of understanding and managing sequence components, 

especially in cases of unbalanced voltage conditions. 
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Let's now consider the torque produced by the negative sequence component. The torque for the 

negative sequence is given similarly to the positive sequence, but with key differences due to the 

opposing direction of rotation. The expression for the negative sequence torque is: 

𝑇𝑇𝑛𝑛 =
3

−𝜔𝜔𝑚𝑚𝑠𝑠
⋅ 𝐼𝐼𝑟𝑟𝑛𝑛2 ⋅

𝑅𝑅𝑟𝑟′

𝑠𝑠𝑛𝑛
 

This can be expanded as: 

𝑇𝑇𝑛𝑛 = −
3𝑉𝑉𝑛𝑛2

�𝑅𝑅𝑠𝑠 + 𝑅𝑅𝑟𝑟′
2 − 𝑠𝑠�

2
+ (𝑋𝑋𝑠𝑠 + 𝑋𝑋𝑟𝑟′)2

⋅
𝑅𝑅𝑟𝑟′

2 − 𝑠𝑠
 

Here, the negative sign indicates that the torque produced by the negative sequence component is 

negative because the field rotates in the opposite direction. The synchronous speed for this 

sequence is also negative, which contributes to the negative torque. 

Now, let's visualize this in terms of the torque-speed characteristics. On the y-axis, we have speed, 

and on the x-axis, torque. The positive sequence voltage generates the typical torque-speed curve, 

with the synchronous speed at ωms and the corresponding positive sequence torque Tp. 

On the other hand, the negative sequence voltage generates a torque-speed curve with a negative 



synchronous speed, represented as -ωms, and a corresponding negative torque Tn. 

Now, the total torque experienced by the motor is the sum of these two torques: Tp from the 

positive sequence and Tn from the negative sequence. When we combine these two, the overall 

torque, or net torque T, is given by: 

𝑇𝑇 = 𝑇𝑇𝑝𝑝 + 𝑇𝑇𝑛𝑛 

Because Tn is negative, the net torque is reduced compared to the torque that would have been 

generated by the positive sequence component alone. This reduction in torque means that under 

unbalanced voltage conditions, the motor's total torque is lower, leading to a decrease in net power 

output as well. 

Thus, the unbalanced voltage supply results in: 

1. A reduction in net torque, 

2. A reduction in net power output. 

As a consequence, the motor's performance is compromised, and it can no longer supply its full 

rated power. This necessitates derating the motor, meaning it has to operate at a lower power rating 

than under balanced voltage conditions.  

In summary, this analysis demonstrates the impact of an unbalanced voltage supply on the 

operation of an induction motor. The presence of both positive and negative sequence components 

causes a reduction in torque and power, requiring the motor to be derated. This concludes our 

discussion for this lecture. We'll continue with further details in the next session. 
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