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Hello and welcome to our lecture on the fundamentals of electric drives! In our previous session, 

we provided a brief introduction to electric drives and explored their numerous advantages. Today, 

we will discuss the dynamics of electric drives, examining how they operate and respond under 

various conditions. Let's get started! 
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Now, let's explore the relationship between speed and torque in our system. We have a motor that 

is mechanically coupled to a load, and we need to examine how these components interact. In this 

setup, the motor produces a torque T in one direction, while the load generates an opposing torque, 

denoted as Tl. This load torque resists the motion of the motor. 

The speed of the system is aligned with the direction in which the motor is attempting to drive the 

load, indicating that both speed and torque are acting in the same direction. To establish the 



dynamic equation for this system, we start by noting that the total moment of inertia is represented 

by J. As this is a rotational system, the motor is responsible for driving the mass of the load. 

The fundamental dynamic equation governing this relationship can be expressed as follows: 

𝑇𝑇 − 𝑇𝑇𝑙𝑙 =
𝑑𝑑
𝑑𝑑𝑑𝑑

(𝐽𝐽 ⋅ 𝜔𝜔𝑚𝑚) 

Here, ωm represents the speed of the motor-load combination, and 𝐽𝐽 ⋅ 𝜔𝜔𝑚𝑚 is the angular momentum 

of the system. The left-hand side of the equation signifies the net torque acting on the system, 

while the right-hand side represents the rate of change of angular momentum. 

If we expand the derivative on the right-hand side, we obtain two distinct terms: 

𝑇𝑇 − 𝑇𝑇𝑙𝑙 = 𝐽𝐽
𝑑𝑑𝜔𝜔𝑚𝑚
𝑑𝑑𝑑𝑑

+ 𝜔𝜔𝑚𝑚
𝑑𝑑𝐽𝐽
𝑑𝑑𝑑𝑑

 

This formulation captures the essence of the dynamics in our electric drive system, illustrating how 

the motor and load interact to affect the overall motion. 

In typical scenarios, the moment of inertia is considered constant over time, which allows us to 

simplify our analysis by assuming that the rate of change of inertia is zero. Consequently, we can 

set the term 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 0. As a result, the equation simplifies to: 

𝑇𝑇 − 𝑇𝑇𝑙𝑙 = 𝐽𝐽
𝑑𝑑𝜔𝜔𝑚𝑚
𝑑𝑑𝑑𝑑

 

From this, we can also express the motor torque T as: 

𝑇𝑇 = 𝐽𝐽
𝑑𝑑𝜔𝜔𝑚𝑚
𝑑𝑑𝑑𝑑

+ 𝑇𝑇𝑙𝑙 

Here, J represents the moment of inertia, while 𝑑𝑑𝜔𝜔𝑚𝑚
𝑑𝑑𝑑𝑑

 is referred to as the angular acceleration. The 

term ωm denotes the speed of the motor, and its derivative gives us the angular acceleration. The 

term Tl signifies the load torque.  

This equation is crucial as it holds true under both steady-state and transient conditions. Now, let’s 



examine what happens in the steady-state scenario. In this state, the motor speed ωm remains 

constant. If the speed is constant, we can conclude that: 

𝑇𝑇 = 𝑇𝑇𝑙𝑙 

This is because 𝑑𝑑𝜔𝜔𝑚𝑚
𝑑𝑑𝑑𝑑

= 0; there is no angular acceleration in the steady state. Thus, when the motor 

operates at a constant speed, we refer to this condition as steady state. In this context, the inertial 

torque 𝐽𝐽 𝑑𝑑𝜔𝜔
𝑑𝑑𝑑𝑑

 becomes zero, indicating that the motor torque is precisely counterbalanced by the load 

torque. Consequently, the speeds of the motor and the load remain in equilibrium, with their 

respective torques opposing each other. 
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Now, let's delve into the speed-torque convention and the multi-quadrant operation of electric 

drives. We have established that in electric drives, two key mechanical variables come into play: 

speed and torque. It is essential to control both the speed and torque of the motor, as these outputs 

are critical to the motor's performance. 

When we represent these two variables on a graph, we can plot them on an xy-plane. In this 

convention, speed is typically placed on the y-axis, while torque is represented on the x-axis. 

Therefore, when we draw the speed-torque characteristic, we have speed on the y-axis and torque 



on the x-axis.  

Let’s denote the mechanical speed as ωm and torque as T. In the SI system, speed is expressed in 

radians per second, while torque is represented in Newton-meters. This gives us our origin point, 

and the graph is divided into four quadrants. 

In the first quadrant, both speed and torque are positive. When we consider power, which is the 

product of speed and torque, this too is positive. Hence, we refer to operation in the first quadrant 

as forward motoring.  

Now, moving to the second quadrant, we find that while the speed remains positive, the torque 

becomes negative. This is because the second quadrant lies on the left-hand side of the graph, 

where torque takes on negative values. 

When the torque is negative, the power, which is defined as the product of speed and torque, also 

becomes negative. This scenario occurs in what we refer to as the second quadrant, known as 

forward braking. Here, the negative power indicates that energy is flowing from the motor back to 

the source, causing the motor to act as a generator. Consequently, we describe this condition as 

forward braking since the motor is effectively decelerating. In this quadrant, the torque is reversed, 

reinforcing the concept of forward braking. 

Moving on to the third quadrant, we observe that both speed and torque are negative. In this case, 

since both variables are negative, the power, which is still the product of speed and torque, 

becomes positive. This positive power flow indicates that energy is moving from the source to the 

motor, which is described as reverse motoring. Despite the negative speed, the motor is actively 

motoring, thus the term "reverse motoring" is used to characterize this situation. 

In the fourth quadrant, the dynamics change once again. Here, we find that the speed is negative 

while the torque remains positive. As a result, we must consider the power, which is still the 

product of speed and torque; in this case, it results in negative power. When power is negative, it 

indicates braking, and given that the speed is also negative, we refer to this phenomenon as reverse 

braking. Thus, we see how the interplay of speed and torque across these quadrants defines the 

operational modes of the motor. 



The first quadrant characteristic is defined as reverse braking. When we refer to it as braking, we 

imply that the power is negative, indicating that the motor is functioning like a generator. 

Conversely, when we speak of motoring, the power becomes positive, signifying that the energy 

flows from the electric source to the motor.  

Now, let's explore an example of this multi-quadrant operation. We have four distinct quadrants: 

Quadrant 1 represents forward motoring, Quadrant 2 is designated for forward braking, and 

Quadrant 3 corresponds to reverse motoring. This framework illustrates how the motor can operate 

in various modes depending on the torque and speed conditions.  
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Quadrant 4 is characterized as reverse braking. Now, let’s delve into a practical example of this 

four-quadrant operation. Consider a hoist, which can simply be referred to as a lift that transports 

either a person or materials. In examining the hoist, we aim to understand its operation across the 

four different quadrants. 

To visualize this, we establish our origin, with speed represented on the y-axis and torque on the 

x-axis. Picture a pulley mechanism with a loaded hoist. Additionally, there is always a 

counterweight, this is the counterweight in our setup. The hoist's cage, which carries the load, is 

balanced by this counterweight, and the motor is coupled with the pulley. 



In Quadrant 1, which we’ll identify as our first quadrant, we are focused on lifting the loaded cage. 

To achieve this, the motor must rotate in the anticlockwise direction, representing the speed of the 

motor. Our condition here is that the weight of the loaded cage is greater than the weight of the 

counterweight. This implies that the load torque is directed downwards.  

The load torque is attempting to drive the system in a clockwise direction, and it inherently opposes 

the motor torque. If we denote the motor torque as T, it acts in the opposite direction to the load 

torque Tl. Here, T and ωm (the speed of the motor) are aligned in the same direction. Thus, both T 

and ωm are positive, leading to positive power output. This situation exemplifies forward motoring, 

a concept we have already discussed in detail. 

In the second quadrant, we again have the pulley mechanism to which the motor is fixed, but this 

time, the cage is unloaded, there’s no material inside. The counterweight remains in place, and our 

condition here is that the weight of the empty cage is less than the weight of the counterweight. 

So, we have the empty cage here, along with the counterweight, and the motor continues to rotate 

in the anticlockwise direction as we attempt to lift the empty cage. 

The motion occurs as follows: this is the speed of the motor, denoted as ωm. However, the load 

torque acts in the downward direction, opposing the motor torque. Thus, the motor torque works 

against the load torque. While ωm remains positive, indicating that we are still lifting the cage, the 

torque has now reversed due to the empty nature of the cage. As a result, the power becomes 

negative, which we refer to as forward braking. 

Having established forward motoring in the first quadrant, we now recognize forward braking in 

the second quadrant.  

Now, let’s transition to the third quadrant. In this quadrant, which we identify as Quadrant 3, we 

again observe our pulley mechanism. Here, we are focused on loading the cage with the 

counterweight in place while the cage itself remains empty. In this scenario, we are lowering the 

empty cage. 

The speed of the motor is now in the clockwise direction. The counterweight is heavier than the 

empty cage, resulting in a load torque acting in the anticlockwise direction. The motor torque, as 

before, will oppose the load torque, thus functioning in the opposite direction. In this third 



quadrant, the speed is negative, indicating that we are now lowering the cage. This dynamic 

illustrates how the system operates differently across the quadrants, depending on the loading 

conditions and motor behavior. 

In this scenario, the torque is also negative, which results in the power being positive. Since power 

is the product of torque and speed, we refer to this situation as reverse motoring, essentially, 

motoring in the reverse direction.  

Now, let’s examine the fourth quadrant. Here, we have our pulley mechanism, and we are focused 

on lowering a loaded cage. This cage is no longer empty; it is now carrying a load, with the 

counterweight positioned accordingly. As we lower this loaded cage, the speed of the motor rotates 

in the clockwise direction, which is considered negative in this context. 

Given that the loaded cage exerts more weight, the load torque acts in a downward direction. 

Consequently, the motor torque must oppose this load torque, resulting in the motor torque acting 

in the opposite direction. In this quadrant, we observe that while the speed is negative, the torque 

remains positive. However, because the speed is reversed and negative, the power is also negative, 

which we identify as reverse braking.  

These four quadrants demonstrate the different operational modes: Quadrant 1 represents forward 

motoring, Quadrant 2 is forward braking, Quadrant 3 is reverse motoring, and Quadrant 4 signifies 

reverse braking. When a drive is capable of operating seamlessly across all four quadrants, we 

refer to it as a four-quadrant drive, and we describe this entire operation as a four-quadrant 

operation. 

This four-quadrant operation signifies that the drive can effectively operate in forward motoring, 

forward braking, reverse motoring, and reverse braking, all within the speed-torque plane. Now, 

let's consider a scenario where the motor and the load are not directly coupled but are instead 

connected through gears or a pulley system. We need to determine how to calculate the combined 

equivalent inertia and torque of this entire combination as seen by the motor. 

Today, we will be discussing the equivalent drive parameters. To start, let's consider a motor that 

is directly coupled to a load. This load will be referred to as Load 0. The motor is connected directly 

to this load, which exerts a torque denoted as 𝑇𝑇𝐿𝐿0. The motor's speed is represented by ωm, and the 



moment of inertia for this combined system is J0. 
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Now, this motor-load combination is connected to another system via mechanical gears. In this 

setup, we have Load 1, which is driven by the motor through a gear mechanism. The gear on the 

motor side has n teeth, while the gear on the load side has n1 teeth. Consequently, the motor speed 

ωm drives the load at a different speed, denoted as 𝜔𝜔𝑚𝑚1. This discrepancy arises because the gear 

ratio is not equal to 1. 

The inertia of Load 1 is represented as J1, and the torque exerted by Load 1 is indicated as 𝑇𝑇𝐿𝐿1. 

Given this configuration, we need to determine the equivalent inertia that the motor perceives and 

the equivalent torque it experiences as a result of this gear coupling. Understanding these 

parameters is crucial for analyzing the performance and dynamics of the entire system. 

Let’s begin by discussing the gear ratio. The gear ratio is defined as the number of teeth on the 

motor side (n) divided by the number of teeth on the load side (n1), expressed as 𝑛𝑛
𝑛𝑛1

. When we 

consider the speed ratio, we can relate it to the motor speeds: 𝜔𝜔𝑚𝑚1
𝜔𝜔𝑚𝑚

= 𝑚𝑚
𝑚𝑚1

.  

This means that the speed of the system is inversely proportional to the number of teeth on the 

gears. If the number of teeth is greater, the speed will be lower; conversely, if the number of teeth 



is fewer, the speed of that particular system will be higher. Therefore, we can state that the ratio 

of the speeds is the inverse of the number of teeth, thus giving us 𝜔𝜔𝑚𝑚1
𝜔𝜔𝑚𝑚

= 𝑚𝑚
𝑚𝑚1

, which we will refer 

to as a1. 

Next, let's explore the equivalent inertia of the entire system. To determine the equivalent inertia, 

we must consider the kinetic energy of the entire system. When the motor rotates, the load also 

rotates, resulting in a certain amount of kinetic energy. The equivalent kinetic energy can be 

expressed as: 

𝐾𝐾𝐾𝐾 =
1
2
𝐽𝐽𝜔𝜔𝑚𝑚2 . 

In this case, the total kinetic energy consists of the kinetic energy from both parts: the first part, or 

the 0th part, has a kinetic energy of  

𝐾𝐾𝐾𝐾0 =
1
2
𝐽𝐽0𝜔𝜔𝑚𝑚2 , 

and the second part contributes with  

𝐾𝐾𝐾𝐾1 =
1
2
𝐽𝐽1𝜔𝜔𝑚𝑚1

2 . 

Thus, the equation that represents the total kinetic energy of the entire system is: 

𝐾𝐾𝐾𝐾 =
1
2
𝐽𝐽0𝜔𝜔𝑚𝑚2 +

1
2
𝐽𝐽1𝜔𝜔𝑚𝑚1

2 . 

To find the equivalent moment of inertia J from this equation, we can manipulate it by moving 

ωm2 to the right-hand side: 

𝐽𝐽 =
𝐽𝐽0𝜔𝜔𝑚𝑚2

𝜔𝜔𝑚𝑚2
+
𝐽𝐽1𝜔𝜔𝑚𝑚1

2

𝜔𝜔𝑚𝑚2
. 

This formulation allows us to calculate the equivalent inertia seen by the motor in relation to the 

entire system, giving us a clearer understanding of its dynamics and energy distribution. 



We can express the total inertia seen by the motor as: 

𝐽𝐽 = 𝐽𝐽0 + 𝐽𝐽1 ⋅ 𝑎𝑎12, 

where a1 is the ratio 𝜔𝜔𝑚𝑚1
𝜔𝜔𝑚𝑚

. Now, let’s shift our focus to the power perceived by the motor. The 

power seen by the motor can be represented as: 

𝑃𝑃 = 𝑇𝑇𝐿𝐿 ⋅ 𝜔𝜔𝑚𝑚. 

In this scenario, we have two different loads. Load 0 is directly coupled to the motor, and its power 

can be expressed as 𝑇𝑇𝐿𝐿0 ⋅ 𝜔𝜔𝑚𝑚. 

When mechanical gears are involved, it’s essential to consider efficiency, which is never 100%. 

We denote the efficiency of the gear as η or η1. Consequently, the power seen by the motor is 

greater than the power delivered to Load 1. This can be articulated as: 

𝑃𝑃 =
𝑇𝑇𝐿𝐿1 ⋅ 𝜔𝜔𝑚𝑚1

𝜂𝜂1
. 

Now, if we manipulate this equation by bringing ωm to the right-hand side, we have: 

𝑇𝑇𝐿𝐿 =
𝑇𝑇𝐿𝐿0 ⋅ 𝜔𝜔𝑚𝑚0

𝜔𝜔𝑚𝑚
+
𝑇𝑇𝐿𝐿1
𝜂𝜂1

⋅
𝜔𝜔𝑚𝑚1

𝜔𝜔𝑚𝑚
. 

Since ωm0 is equivalent to ωm, we can simplify this to: 

𝑇𝑇𝐿𝐿 = 𝑇𝑇𝐿𝐿0 +
𝑇𝑇𝐿𝐿1
𝜂𝜂1

⋅ 𝑎𝑎1. 

This expression gives us the equivalent load torque seen by the motor.  

Now, if we consider multiple couplings connected to the motor, each with varying gear ratios, 

denoted as a1, a2, a3, a4, and corresponding efficiencies η1, η2, η3, η4, we can derive a general 

equation. This equation will allow us to represent the equivalent inertia and equivalent torque for 

the entire system in a comprehensive manner. Thus, we can elegantly express the dynamics of 

multiple couplings and their effects on the motor's performance. 
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The general equation for the equivalent inertia J can be expressed as: 

𝐽𝐽 = 𝐽𝐽0 + 𝑎𝑎12𝐽𝐽1 + 𝑎𝑎22𝐽𝐽2 + ⋯, 

where a1, a2, etc., represent the gear ratios. In a similar fashion, the equivalent load torque can be 

formulated as: 

𝑇𝑇𝐿𝐿 = 𝑇𝑇𝐿𝐿0 +
𝑎𝑎1𝑇𝑇𝐿𝐿1
𝜂𝜂1

+
𝑎𝑎2𝑇𝑇𝐿𝐿2
𝜂𝜂2

+ ⋯, 

where η1 and η2 are the efficiencies of gears 1 and 2, respectively.  

We have already explored how to derive the equivalent moment of inertia and equivalent load 

torque when the motor is coupled with the load through gears.  

With this understanding, we will conclude today’s lecture. We will continue our discussion in the 

next session. 


