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Hello and welcome to today’s lecture on the fundamentals of electric drives! In our previous 

discussion, we focused on the variable voltage and variable frequency control of induction motors. 

Today, we'll pick up right where we left off.  

When it comes to efficiently controlling the speed of an induction motor, it is essential to vary 

both the voltage and the frequency. By doing so, we can achieve a more effective and responsive 

control system. Now, let's take a closer look at the circuit diagram and the relevant equations that 

will guide our understanding of this concept. 
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Now, let’s delve into the concept of variable voltage and variable frequency control. The steady-

state equivalent circuit we discussed previously is still applicable in this context. We can represent 

the equivalent circuit of an induction motor, which begins with the stator resistance (Rs), followed 



by the stator leakage inductance (Ls), the rotor leakage inductance (Lr', referred from the primary 

side), and the rotor resistance (Rr' divided by s). 

The applied voltage in this circuit is denoted as V. It’s important to note that we have ignored the 

magnetizing reactance, as it does not directly factor into the torque equation. Now, focusing on the 

rotor current (Ir'), we can express it as: 

𝐼𝐼𝑟𝑟′ =
𝑉𝑉

√𝑅𝑅2 + 𝑋𝑋2
 

Here, the reactance X is given by: 

𝑋𝑋 = 2𝜋𝜋𝑓𝑓(𝐿𝐿𝑠𝑠 + 𝐿𝐿𝑟𝑟′ ) 

If we simplify this expression, we arrive at: 

𝐼𝐼𝑟𝑟′ =
𝑉𝑉

�𝑅𝑅𝑠𝑠 + 𝑅𝑅𝑟𝑟′
𝑠𝑠
2

+ �2𝜋𝜋𝑓𝑓(𝐿𝐿𝑠𝑠 + 𝐿𝐿𝑟𝑟′ )�2
 

Now, our goal is to find the maximum torque, which occurs at a specific slip value, denoted as 

𝑠𝑠𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚. This value can be expressed as: 

𝑠𝑠𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 =
𝑅𝑅𝑟𝑟′

√𝑅𝑅2 + 𝑋𝑋2
 

Here, Xs represents the stator reactance, calculated as 2 π f Ls, while Xr denotes the rotor leakage 

reactance, expressed as 2 π f Lr'. 

Substituting this expression into the torque equation, we find that torque is given by: 

𝑇𝑇 =
3
𝜔𝜔𝑀𝑀𝑠𝑠

𝐼𝐼𝑟𝑟′2
𝑅𝑅𝑟𝑟
𝑠𝑠

 

This leads to the overall equation for torque: 



𝑇𝑇 =
3
𝜔𝜔𝑀𝑀𝑠𝑠

⋅
𝑉𝑉2

𝑅𝑅𝑠𝑠 + 𝑅𝑅𝑟𝑟′
𝑠𝑠

2

 

This comprehensive understanding allows us to explore the dynamics of variable voltage and 

frequency control in induction motors more effectively. 

Now, let’s rewrite the torque equation in terms of the reactance, incorporating Xs and Xr' alongside 

Rr' divided by s. When we substitute the slip for maximum torque into this equation, we notice that 

the slip value for maximum torque can take on two forms: one is a positive value, indicating 

motoring conditions, and the other is a negative value, which corresponds to braking or generating 

conditions. 

Upon substituting smaxT into the equation and simplifying, we derive the expression for maximum 

torque. The maximum torque, Tmax, is expressed as: 

𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚 =
3

2𝜔𝜔𝑀𝑀𝑠𝑠
⋅
𝑉𝑉2

𝑅𝑅𝑠𝑠
± �𝑅𝑅2 + 𝑋𝑋𝑠𝑠 − 𝑋𝑋𝑟𝑟′2 

This illustrates that the maximum torque is fundamentally related to the torque-speed characteristic 

of the induction motor. It’s important to recognize that the maximum torque is dependent on the 

square of the applied voltage. Specifically, we see that Tmax is proportional to V2. 

Now, in this context, if we further replace the reactance with frequency, we can express the 

maximum torque in another form. Thus, we arrive at: 

𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚 =
3

2𝜔𝜔𝑀𝑀𝑠𝑠
⋅
𝑉𝑉2

𝑅𝑅𝑠𝑠
± �𝑅𝑅𝑚𝑚2 + 4𝜋𝜋2𝑓𝑓2(𝐿𝐿𝑠𝑠 + 𝐿𝐿𝑟𝑟′ )2 

Next, to streamline our expression, we can divide the entire equation by f2. By doing so, we obtain 

the following equation, which illustrates the relationship between torque, voltage, and frequency 

more clearly. 

What we have derived is that the maximum torque, Tmax, can be expressed as: 



𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚 = 𝐾𝐾 ⋅
𝑉𝑉
𝑓𝑓2

⋅
1

𝑅𝑅𝑠𝑠/𝐹𝐹
± ��

𝑅𝑅𝑠𝑠
𝐹𝐹 �

2

+ 4𝜋𝜋2(𝐿𝐿𝑠𝑠 + 𝐿𝐿𝑟𝑟′ )2 
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Let’s revisit our previous equation. We noticed that by dividing the entire expression by F, we 

effectively introduced F into both the numerator and denominator. When we perform this division, 

the term inside the square root becomes F2, and we end up dividing other terms by F2 as well. This 

leads to some cancellations, allowing F2 in the numerator to cancel out with F2 in the denominator. 

It's important to recognize that ωMs, which is the synchronous speed, is indeed a function of 

frequency. Specifically, ωMs is calculated as: 

𝜔𝜔𝑀𝑀𝑠𝑠 =
2𝜋𝜋𝐹𝐹
𝑃𝑃/2

 

This relationship indicates that the synchronous speed varies with frequency, and thus another 

frequency term arises from ωMs. Ultimately, we arrive at the expression 𝑉𝑉
𝑓𝑓2

 multiplied by a constant 

K, which depends on factors such as the number of poles and includes the factor of 3. 

In our denominator, we have Rs/F for the motoring action, and the negative sign represents the 

generating action. This leads us to: 



��
𝑅𝑅𝑠𝑠
𝐹𝐹 �

2

+ 4𝜋𝜋2(𝐿𝐿𝑠𝑠 + 𝐿𝐿𝑟𝑟′ )2 

Now, it’s worth noting that when we consider a three-phase induction motor, the frequency is 

typically high; for instance, the normal rated frequency is 50 Hertz. When operating at this 

frequency, F assumes a large value. Although we can vary the frequency, if we find ourselves 

working with higher frequencies, we can effectively ignore Rs/F when compared to the reactive 

components. Thus, under conditions of elevated frequency, this simplifies our analysis 

considerably. 

What we can conclude from our analysis is that 𝑅𝑅𝑠𝑠
𝐹𝐹

 becomes significantly smaller compared to 2π 

Ls + Lr' when the frequency F is large. This means that, since we are dealing with a substantial 

value of F, we can confidently state that 𝑅𝑅𝑠𝑠
𝐹𝐹

 is much less than 2𝜋𝜋𝐿𝐿𝑠𝑠 + 𝐿𝐿𝑟𝑟′ . Consequently, in our 

denominator, we can ignore this term entirely because the resistance is typically small due to the 

nature of copper windings.  

By disregarding 𝑅𝑅𝑠𝑠
𝐹𝐹

, we arrive at the following expression for maximum torque: 

𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚 = 𝐾𝐾 ⋅
𝑉𝑉
𝑓𝑓2

⋅ �4𝜋𝜋2(𝐿𝐿𝑠𝑠 + 𝐿𝐿𝑟𝑟′ )2 

This simplifies to 2π (Ls + Lr'). Therefore, this equation effectively gives us the maximum value 

of torque.  

What’s crucial to note is that the maximum torque remains constant as long as the ratio 𝑉𝑉
𝑓𝑓
 is 

maintained. This is precisely why we always strive to keep V/f constant while varying both voltage 

and frequency. This approach is commonly referred to as constant volts per hertz control, or simply 

constant V/f control. 

Now, let’s consider the implications if the frequency is low. In such cases, 𝑅𝑅𝑠𝑠
𝐹𝐹

 can no longer be 

neglected. When the frequency decreases, this term starts to dominate the behavior of the system. 

To maintain the same level of torque under these conditions, we need to increase V/f. So, while 



we keep V/f constant for higher frequencies, we must actually increase V/f for lower frequencies 

to compensate for the drop due to stator resistance. This adjustment ensures that we can still 

achieve the desired torque in situations where the frequency is low. 

Let’s take a closer look at the characteristic curve we’re working with. On one axis, we have 

voltage, while on the other, we have frequency. By keeping the ratio 𝑉𝑉
𝑓𝑓
 constant, we ideally expect 

to move along a straight line that passes through the origin. However, at lower frequencies, we 

need to increase 𝑉𝑉
𝑓𝑓
 to account for the voltage drop caused by stator resistance. This is the function 

we need to follow. 

Given a specific frequency, we can use this function to determine the corresponding voltage. As 

we approach the rated frequency, we also reach the rated voltage. This is because, as we increase 

the frequency, the voltage must also rise accordingly. When we hit the rated frequency of 50 Hertz, 

we achieve the rated voltage. 

However, it's crucial to remember that once we reach this point, any further increase in frequency 

should not lead to an increase in voltage. Motors are designed with specific insulation ratings, and 

applying, for instance, 300 volts to a motor rated for 230 volts would put undue stress on the 

insulation. Thus, we must not exceed the voltage rating of the motor. When we increase the 

frequency beyond the rated frequency, the voltage is maintained constant; only the frequency is 

increased. This means that beyond the rated frequency 𝐹𝐹rated, we keep the voltage at 𝑉𝑉rated constant 

and do not increase it further. 

Graphically, this is represented as a function where, initially, as we vary the frequency, we need 

to increase the voltage. After reaching the rated frequency, the voltage remains constant despite 

further increases in frequency. This understanding is critical when we implement constant V/f 

control for induction motors. Now, let’s explore how we can achieve this effectively. 

Now, let's delve into the open-loop control system, as a closed-loop setup is not required in this 

scenario. Here, we provide a frequency command that is fed into a delay block. This delay block 

processes the command and generates the frequency reference. We also need to determine the 

corresponding voltage, which we obtain from the 𝑉𝑉
𝑓𝑓
 function we previously discussed. By inputting 



the frequency into this function, we derive the output, which is our reference voltage. 

(Refer Slide Time: 17:05) 

 

This reference voltage, along with the reference frequency, is then supplied to a variable voltage 

and variable frequency (VVVF) inverter. The inverter takes in a DC input voltage and converts it 

into an AC voltage suitable for driving the induction motor. In this case, we are dealing with a 

three-phase induction motor, and the output of the inverter produces a three-phase AC signal. 

As we change the frequency, it's essential to do so gradually. Abrupt changes in frequency can 

lead to instability in the machine. That's precisely why we incorporate a delay block. When we 

apply a step change to the frequency, the actual change is delayed, allowing the machine's inertia 

to respond appropriately.  

As we vary the frequency, represented by our frequency command, the voltage is adjusted in 

accordance with the relationship we established earlier. We strive to maintain a constant 𝑉𝑉
𝑓𝑓
 ratio, 

except in low-speed or low-frequency regions, where we increase 𝑉𝑉
𝑓𝑓
 to compensate for the voltage 

drop due to stator resistance. This approach ensures that the torque of the motor remains constant 

throughout the operation. 

Let’s take a closer look at the torque-speed characteristic of this drive. On the graph, we place 



speed on the y-axis and torque on the x-axis, with the origin serving as our reference point. The 

resulting characteristic curve captures the behavior of the motor during both motoring and 

regenerative braking operations. As we adjust the frequency, we observe a series of parallel 

characteristics, with the peak torque, also known as the maximum torque, remaining consistent 

throughout these variations. 

This torque-speed characteristic reveals the unique relationship we see as frequency is reduced 

while maintaining a constant 𝑉𝑉
𝑓𝑓
 ratio. The result is a family of curves that exhibit this behavior. 

Even in the generating region, we observe a similar trend, where the peak torque remains nearly 

constant. We designate the maximum torque as 𝑇𝑇max, while the corresponding torque for braking 

or generating is represented as the negative of the maximum torque. 

To clarify, if we refer to the peak torque as 𝑇𝑇max1, the negative peak torque during braking would 

be labeled as −𝑇𝑇max2. Here, the torque is negative, indicating the braking or generating phase, 

while the positive torque reflects the motoring phase. 

This family of curves emerges when we apply variable voltage and variable frequency control 

while keeping 𝑉𝑉
𝑓𝑓
 constant. The base speed, denoted as 𝜔𝜔Ms, represents the synchronous speed. 

Beyond this rated synchronous speed, we need to adjust our approach: we keep the voltage constant 

but increase the frequency. Consequently, the 𝑉𝑉
𝑓𝑓
 ratio decreases, leading to a reduction in torque. 

As we transition to higher speeds, we observe a gradual decline in torque, as depicted in this 

characteristic curve. Up to the base speed, we maintain a constant torque; however, once we exceed 

the base speed, our critical point, we begin to see the torque reduce. This dynamic behavior is 

crucial in understanding the operation of the motor under varying conditions. 

Beyond the base speed, we transition into a region characterized by variable torque, where torque 

begins to decrease even as speed increases. This phenomenon is referred to as the constant power 

mode or constant power region. Prior to reaching the base speed, we observe what is known as the 

constant torque region. This entire behavior illustrates the torque-speed characteristic of an 

induction motor when it is supplied by a variable voltage and variable frequency inverter, with the 
𝑉𝑉
𝑓𝑓
 ratio maintained constant up to the base speed. 



Once we exceed the base speed, the voltage remains constant while the frequency is increased. As 

a result, the 𝑉𝑉
𝑓𝑓
 ratio decreases, leading to a reduction in torque in accordance with our established 

equations, which aligns with the behavior seen in the constant power mode. 

Now, it's important to note that this is an open-loop control system. The absence of closed-loop 

feedback means we lack direct control over the motor current, raising some potential drawbacks. 

These drawbacks include the following: since we are operating in an open-loop mode, there is no 

direct feedback mechanism to monitor the motor current, and stability may not be guaranteed 

during transient conditions. Our adjustments are limited to changing the frequency, and while the 

voltage changes in accordance with that frequency, we cannot ascertain the actual motor current. 

It is possible, for instance, that the motor could become overloaded and draw excessive current, 

yet we would have no indication of this condition. 

Moreover, if we were to vary the frequency too rapidly, the motor could potentially enter an 

unstable region. To address these concerns, we turn to slip frequency control, which offers a more 

robust and reliable approach compared to the open-loop 𝑉𝑉
𝑓𝑓
 control system. In our next discussion, 

we will delve deeper into the principles and advantages of slip frequency control. 
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This is referred to as slip frequency or slip speed control of the induction motor. But why should 



we opt for slip frequency control? To understand this, let’s delve into the underlying philosophy 

of slip frequency or slip speed control.  

First, let’s clarify what slip speed is. If we were to plot the torque-speed characteristic of an 

induction motor, we would observe the following curve, with speed on the y-axis and torque on 

the x-axis. The synchronous speed marks the point where slip equals zero, while at the origin, the 

slip equals one. For example, if the motor is operating at a certain speed, let’s denote this speed as 

ωM. The slip speed is defined as the difference between the synchronous speed and the motor 

speed:  

Slip speed = Synchronous speed − 𝜔𝜔𝑀𝑀 

Now, let’s consider a constant torque load. This load is represented as TL, and within this region, 

we refer to it as the conventional stable region. This stable region is where we can find the 

maximum torque, 𝑇𝑇max. The distinction between stable and unstable regions is defined with respect 

to a torque profile. For a constant torque load, the area we discussed is the stable region, while any 

area beyond this threshold becomes unstable. 

When we analyze a torque that exceeds the constant torque load, we notice that it intersects the 

torque-speed characteristic at two distinct points: one at point A and the other at point B. Here, 

point A represents a stable operating point, while point B signifies an unstable point. It is essential 

to operate the motor within the stable region to ensure reliable performance. 

This stability can be achieved by effectively controlling the slip speed, which, as mentioned, is the 

difference between the synchronous speed and the motor speed. By managing this slip speed, we 

can ensure that the motor operates within the maximum allowable slip speed, denoted as 𝜔𝜔𝑆𝑆𝑙𝑙max. 

This is the primary rationale behind the adoption of slip speed control or slip frequency control, as 

it guarantees the stability of the induction motor drive. 

We will conclude our discussion for today. In the next lecture, we will explore slip frequency 

control in greater detail. 


