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Current Source Inverter (CSI) fed Induction Motor Drive 

Hello and welcome to this lecture on the fundamentals of electric drives! In today’s session, we 

will be exploring the fascinating world of current source inverter-fed induction motor drives. 

Previously, we have delved into voltage source inverter-fed induction motor drives; however, for 

very high power applications, current sources are often preferred. This preference arises from their 

remarkable reliability compared to voltage sources. So, without further ado, let’s dive into the 

intricacies of current source inverter-fed induction motor drives in today’s lecture! 
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Current source inverter, commonly abbreviated as CSI, is widely utilized for high-power 

applications, particularly in the megawatt range. To illustrate, let’s draw the circuit diagram of a 

typical current source, which is realized through the use of thyristors (SCRs) and diodes. The 

configuration will appear as follows: we have SCRs along with diodes, specifically, two sets of 

diodes, with additional diodes positioned accordingly. 



At the heart of the design is the DC link, which incorporates a substantial inductance. Additionally, 

we have capacitors situated between the SCRs and the diodes; these are referred to as commutating 

capacitors. Following this setup, we connect the induction motor, which serves as the load. On the 

input side, we have a converter bridge, represented here in block diagram form. This converter 

bridge is a three-phase fully controlled converter, designed to accept a three-phase AC input. 

In this configuration, the SCRs are designated as T1, T2, T3, T4, T5, and T6, while the diodes are 

labeled D1, D2, D3, D4, D5, and D6. The capacitors, denoted as C, are all of equal value. It's 

important to note that we will not delve into the detailed operation of this CSI, as that topic is 

typically covered in an introductory course on power electronics.  

The capacitors facilitate forced commutation, enabling the SCRs to be triggered in a specific 

sequence, from T1 through T6. As this occurs, the capacitors become charged, and they play a 

crucial role in commutating one SCR when the next SCR is activated. 

The sequence for triggering the SCRs is as follows: T1, T2, T3, T4, T5, and T6. At any given 

moment, if we disregard the commutation overlap, only two SCRs will be conducting at the same 

time. The conduction pairs will be T1 and T2, T2 and T3, T3 and T4, T4 and T5, T5 and T6, and 

so on.  

To illustrate the SCR conduction, let’s consider the scenario when T1 and T2 are active. Here, we 

have phase A, phase B, and phase C, which correspond to the phase currents IA, IB, and IC. When 

T1 and T2 are conducting, the current flows from these phases and returns through phase C. After 

this, we transition to the next pairs: T2 and T3, T3 and T4, T4 and T5, T5 and T6, and T6 and T1, 

repeating the cycle back to T1 and T2. 

It's important to note that at any given time, two SCRs are conducting, with each SCR conducting 

for 120 degrees. This conduction interval lasts 60 degrees, and there are a total of six conduction 

changes within one complete cycle. Consequently, each SCR conducts for two segments, which 

also totals 120 degrees. 

As we observe the output current, let’s plot IA against ω t at an angle. The resulting waveform for 

IA will resemble a classic rectangular wave. Each segment corresponds to 120 degrees, which is 



consistent in both directions. Here, the input current is denoted as Ii, while the output current is IA.  

For the negative side, we have -Ir. If we analyze the fundamental component of this, we find that 

it represents the phase current IA. Similarly, the currents for phases B and C will be shifted from 

phase A by 120 degrees, continuing this sequence. Thus, what we see here is the characteristic 

behavior of phase A current. 
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Let’s delve into the RMS value, particularly focusing on the fundamental component. The RMS 

value of the output current, denoted as Is, is equal to 4𝐼𝐼𝑖𝑖
𝜋𝜋
⋅ cos(30∘). Here, Ii represents the peak 

value of the current. Since we are calculating the RMS value, we need to divide by √2. This gives 

us 2√2𝐼𝐼𝑖𝑖
𝜋𝜋

, and recognizing that cos(30∘) 𝑖𝑖𝑖𝑖 √3
2

, we arrive at the final expression of √6𝐼𝐼𝑖𝑖
𝜋𝜋

. 

This means that if we know the inverter’s input DC current, we can easily calculate the RMS value 

of the stator current, which is the output current of the inverter. This current flows in the induction 

motor and is crucial for torque production. 

With an inverter at our disposal, we can vary both the output current and the output fundamental 

frequency. The fundamental frequency can be analyzed by examining the fundamental current 

component, which can be determined using the Fourier series method. Thus, we have the capability 



to change not only the RMS value of the current but also the frequency by adjusting the switching 

speed. This makes it a variable current and variable frequency source, allowing us to manipulate 

the stator current and frequency. 

Now, applying this principle to the induction motor, we can sketch the equivalent circuit of the 

induction motor. In this circuit, we include the stator resistance and reactance, the rotor reactance, 

and the rotor resistance. This equivalent circuit is quite detailed and accurately reflects the system, 

incorporating losses in the output.  

Thus, the equivalent circuit consists of the stator resistance, stator leakage reactance, rotor leakage 

reactance, rotor resistance referred to the primary side, and the magnetizing reactance. This 

comprehensive approach ensures that we account for all essential parameters in the analysis of the 

induction motor's performance. 

In our equivalent circuit, we have a current source instead of a voltage source. The current source 

has a value of Is, which represents the RMS value, measured in amperes. The rotor current is 

denoted as IR, while the current in the magnetizing branch is Im.  

In this setup, we can determine the value of the effective rotor current, denoted as IR'. The 

magnitude of IR' is equivalent to the input current Is flowing through this path. To express this 

mathematically, we have: 

𝐼𝐼𝑅𝑅′ =
𝐼𝐼𝑠𝑠 ⋅ 𝑋𝑋𝑀𝑀
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𝑆𝑆 �
2

+ (𝑋𝑋𝑀𝑀 + 𝑋𝑋𝑅𝑅′ )2

 

Here, XM represents the magnetizing reactance, RR' is the rotor resistance referred to the primary 

side, and S is the slip. 

Now, let's move on to the torque equation for the induction motor. The torque (T) is given by: 

𝑇𝑇 =
3
𝜔𝜔𝑀𝑀𝑠𝑠

⋅ 𝐼𝐼𝑠𝑠2 ⋅
𝑅𝑅𝑅𝑅′

𝑆𝑆
 

This expression allows us to calculate the torque based on the slip. If we substitute IR' into the 



torque equation, we get: 

𝑇𝑇 =
3
𝜔𝜔𝑀𝑀𝑠𝑠

⋅ 𝐼𝐼𝑠𝑠2 ⋅
𝑋𝑋𝑀𝑀2
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⋅
𝑅𝑅𝑅𝑅′
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This reveals the relationship between torque and slip. To find the slip at which torque reaches its 

maximum value, we can analyze this expression further. The slip for maximum torque, denoted as 

𝑆𝑆𝑚𝑚𝑚𝑚𝑚𝑚 𝑇𝑇, can be derived from the condition where the denominator reaches its optimum. 

Mathematically, we find that: 

𝑆𝑆𝑚𝑚𝑚𝑚𝑚𝑚 𝑇𝑇 =
𝑅𝑅𝑅𝑅′

𝑋𝑋𝑀𝑀 + 𝑋𝑋𝑅𝑅′
 

In this equation, we see that the slip for maximum torque is contingent upon the rotor resistance 

and the total reactance, which includes both the magnetizing reactance and the rotor reactance 

referred to the primary side. When these two quantities are equal, we achieve the condition for 

maximum torque, providing a clear insight into the operation of the induction motor under varying 

slip conditions. 
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Let’s analyze the value of 𝑆𝑆𝑚𝑚𝑚𝑚𝑚𝑚 𝑇𝑇. What we observe is that 𝑆𝑆𝑚𝑚𝑚𝑚𝑚𝑚 𝑇𝑇 can be expressed as: 

𝑆𝑆𝑚𝑚𝑚𝑚𝑚𝑚 𝑇𝑇 =
𝑅𝑅𝑅𝑅′

𝑋𝑋𝑀𝑀 + 𝑋𝑋𝑅𝑅′
 

This ratio represents a very small quantity, significantly less than 1. This is due to the fact that the 

magnetizing reactance XM is quite large, while the leakage reactance XR' is relatively small. 

Therefore, we can expect the slip to be on the order of approximately 0.001 or 0.002. 

Now, let’s consider the torque-slip characteristic of a Current Source Inverter (CSI) fed machine. 

In this characteristic, if we plot the relationship between the rotor speed ωm and the torque, we 

notice a distinctive behavior. At very low values of slip, the torque-speed characteristic 

demonstrates that the torque starts at a low value, and as we vary the input current Is, we obtain a 

family of torque curves. For instance, we can denote these curves as Is1, Is2, and Is3. 

At the synchronous speed ωMS, which is our reference point, we find the origin of the torque-speed 

characteristic. The slip corresponding to the rated torque is exceedingly small, emphasizing that 

the operating slip is quite minimal. For example, if we choose to operate at Is1, the slip will be 

around 0.001, which is indeed a very small value, indicating the condition for rated torque. 

Moreover, when we examine the equivalent circuit at this small slip, we notice that the slip 

resistance becomes quite large. As a result, this large resistance influences the circuit behavior, 

causing the current to predominantly flow towards the magnetizing reactance. This is a crucial 

aspect of the operation, as it underscores how the circuit dynamics change under low slip 

conditions, leading to enhanced magnetizing currents in the system. 

This brings us to the concept of saturation in induction machines. At this point, even when we 

attempt to operate at maximum rated torque, the machine is significantly under-saturated. 

Therefore, it is not advisable to operate in this region.  

Now, if we examine the corresponding characteristics of a Voltage Source Inverter (VSI) fed 

induction motor, we observe that the rated slip is much higher. This indicates that the operation 

aligned with the rated flux value for a VSI fed induction motor is considerably different. It’s crucial 

to understand that if we aim to operate with a rated value of flux using a Current Source Inverter 



(CSI), the characteristic curve positions us in what is known as the unstable region of the CSI. 

The CSI characteristic presents us with this instability. This means that if we intend to maintain a 

constant air gap flux while operating the CSI, we must implement a closed-loop control system to 

stabilize this inherently unstable CSI. It’s essential to note that a CSI-driven induction motor is 

never operated under open-loop conditions. Instead, a CSI-fed induction motor requires closed-

loop feedback for effective control, ensuring the stability of the air gap flux during operation.  

To maintain constant air gap flux, our operation must take place within a specific range, 

necessitating closed-loop feedback due to the CSI’s tendency to function in the unstable region. 

Now, let’s delve into the operation of the CSI while maintaining a constant air gap flux. 
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Let’s consider the equivalent circuit we discussed earlier. Here, we have the stator and rotor 

components, along with the air gap represented by the magnetizing branch, denoted as Xm. We 

also have the rotor resistance Rr', the slip s, the stator reactance Xs, and we are feeding this setup 

with a Current Source Inverter (CSI), represented by a current source. In this configuration, the 

rotor current is Ir, while the stator current is denoted as Is. 

Now, if we want to determine the magnetizing current, Im, we must keep this current constant to 

ensure stable operation with a constant air gap flux. To express Im, we can relate it to the stator 



current Is flowing into the circuit. The formula for the magnetizing current can be defined as 

follows: 

𝐼𝐼𝑚𝑚 =
𝐼𝐼𝑠𝑠 ⋅ �

𝑅𝑅𝑟𝑟
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2
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Squaring both sides yields: 

𝐼𝐼𝑚𝑚2 = 𝐼𝐼𝑠𝑠2 ⋅ �
𝑅𝑅𝑟𝑟
𝑖𝑖 �

2

+
4𝜋𝜋2𝑖𝑖2𝐿𝐿𝑟𝑟′

2

𝑅𝑅𝑠𝑠2 + 4𝜋𝜋2𝑓𝑓2(𝐿𝐿𝑚𝑚 + 𝐿𝐿𝑟𝑟′)2
 

In this equation, 𝑖𝑖 ⋅ 𝑓𝑓 represents what we call the slip frequency. Controlling the slip frequency of 

a CSI-fed induction motor is crucial, as it can vary from zero up to a certain value.  

Now, let’s analyze what happens when the slip frequency is very small. When sf is negligible, the 

contributions from the slip components become less significant compared to the dominant terms. 

Therefore, we can neglect these smaller terms, leading us to the simplified equation: 

𝐼𝐼𝑚𝑚2 ≈ 𝐼𝐼𝑠𝑠2 ⋅ �
𝑅𝑅𝑟𝑟′
𝑖𝑖𝑓𝑓
�
2

 

This implies that: 

𝐼𝐼𝑚𝑚 = 𝐼𝐼𝑠𝑠 

Thus, when the slip frequency is very small, the RMS value of the stator current Is is essentially 

equal to the magnetizing current Im. This relationship highlights the direct correlation between the 

stator and magnetizing currents in the context of slip frequency control. 

Now, let's consider the scenario where the slip frequency, sf, is moderately small. In this case, we 

can neglect certain quantities in our equations. Specifically, if sf is moderately small, we can set 

the negligible terms to zero. However, it’s important to note that while some quantities may be 

small, they still hold some significance and dominate the analysis. Thus, we can disregard the less 

significant parts. 
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By neglecting the denominator 4𝜋𝜋2𝐿𝐿𝑟𝑟2  and simplifying the numerator where Rr' divided by sf is 

small, we arrive at the following relationship: 

𝐼𝐼𝑚𝑚2 = 𝐼𝐼𝑠𝑠2 ⋅
𝑅𝑅𝑟𝑟′
𝑖𝑖𝑓𝑓

2

 

This simplifies to: 

𝐼𝐼𝑠𝑠 = 𝐼𝐼𝑚𝑚 ⋅
2𝜋𝜋(𝐿𝐿𝑚𝑚 + 𝐿𝐿𝑟𝑟′)

𝑅𝑅𝑟𝑟 ⋅ 𝑖𝑖𝑓𝑓
 

What we see here is that the stator current, Is, varies linearly with the slip frequency sf. This 

relationship shows that if we maintain the magnetizing current Im constant, the stator current Is is 

directly proportional to the slip frequency. 

If we graph this relationship between slip frequency and the RMS value of the stator current, we 

find that when sf is very small, Is remains constant. As sf increases, the stator current also rises 

accordingly. We can represent this trend graphically, showing that both positive and negative 

increases in slip frequency correspond to a similar increase in stator current. 

This observation is critical because it indicates that to adjust the slip frequency, we must also 



change the stator current to maintain a constant magnetizing current, or in other words, to keep the 

air gap flux stable.  

With this understanding, we can move forward in our discussions on controlling a CSI-fed 

induction motor by adjusting the slip frequency while simultaneously modifying the stator current 

to ensure consistent magnetizing current and air gap flux. 

This concludes today's lecture, and we will continue this discussion in our next session. 


