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Equivalent Drive Parameters, Friction Components, Nature of Load Torque 

Hello and welcome to this lecture on the fundamentals of electric drives! In our previous session, 

we discussed the equivalent drive parameters when a gear is positioned between the motor and 

the load. Today, we will continue to build on that foundation and explore further aspects of 

electric drives. 
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We have observed that when we have a motor connected to a load through a gear, the equivalent 

parameters manifest in specific ways. For instance, the inertia is represented as J = J0 + J1 a12, 

where a1 signifies the gear ratio. Specifically, a1 is defined as the ratio of the number of teeth on 

the motor gear (n) to the number of teeth on the load gear (n1).  

Furthermore, the torque perceived by the motor can be expressed as: 

T𝐿𝐿0 +
𝑇𝑇𝐿𝐿1
𝜂𝜂1

⋅ 𝑎𝑎1, 

where η1 denotes the efficiency of the first gear. This discussion pertains to the context of a 



rotational system, specifically addressing the behavior of a rotational load. 
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When the load is rotating, and we have multiple gears in play, we can express the gear ratios as 

a1, a2, and so forth. The effective inertia seen by the motor is given by the equation: 

𝐽𝐽 = 𝐽𝐽0 + 𝑎𝑎1𝐽𝐽12 + 𝑎𝑎2𝐽𝐽22 + 𝑎𝑎3𝐽𝐽32 + ⋯, 

where each term represents the contribution of each gear. Similarly, the equivalent load torque 

can be represented as: 

𝑇𝑇𝐿𝐿 = 𝑇𝑇𝐿𝐿0 +
𝑎𝑎1𝑇𝑇𝐿𝐿1
𝜂𝜂1

+
𝑎𝑎2𝑇𝑇𝐿𝐿2
𝜂𝜂2

+ ⋯, 

with η1 and η2 denoting the efficiencies of gears 1 and 2, respectively. This formulation can be 

extended to accommodate any number of gears. 

Now, let’s shift our focus to the translational system. But what exactly do we mean by a 

translational system? Unlike rotational systems, a translational system does not rotate; instead, it 

moves in a linear direction. A prime example of this is a lift that goes up and down, demonstrating 

translational motion. However, behind the scenes, there is a motor responsible for converting 

rotational motion into translational motion. 

Currently, we will discuss the coupling of a translational load with a rotating motor. In this 

scenario, we have a motor coupled to a load, which we will refer to as load 0. This load is a 



rotational load, and it is linked through a mechanical coupling to a conversion system that 

transforms rotational motion into linear motion transmission. Additionally, we have a mass 

involved, which can move up or down at a velocity denoted as v1. 

This mass, denoted as m1, exerts a force F1. The combination of the motor and the load has an 

effective inertia represented as J0, referring specifically to the first load, which is the zero-th load. 

The motor rotates at a speed of ωm, while load 0 exerts an opposing load torque denoted as 𝑇𝑇𝐿𝐿0. 

The motor torque, represented as TL, is what we need to determine, alongside the linear velocity 

of this mass, which is denoted as v1. 

To analyze this system, we will employ the same methodology as before. First, let’s calculate the 

effective kinetic energy of the entire system. We have a rotational system involving load 0 and a 

translational system that moves vertically, either up or down, exhibiting linear motion. So, what 

is the effective kinetic energy of this entire system?  

We can express the equivalent kinetic energy as: 

𝐾𝐾𝐸𝐸equiv =
1
2
𝐽𝐽𝜔𝜔𝑚𝑚2 , 

where J is the equivalent inertia and ωm is the equivalent speed. The kinetic energy of the entire 

system can also be represented as the sum of the kinetic energies of its components:  

𝐾𝐾𝐸𝐸equiv =
1
2
𝐽𝐽0𝜔𝜔𝑚𝑚2 +

1
2
𝑚𝑚𝑣𝑣12. 

Here, the first term corresponds to the kinetic energy of the rotational load, while the second term 

represents the kinetic energy of the translational load, calculated as 1
2
𝑚𝑚𝑣𝑣12. This formulation 

provides us with the effective kinetic energy of the system. 

To determine the effective inertia J, we can rearrange this equation as follows: 

𝐽𝐽 =
𝐽𝐽0𝜔𝜔𝑚𝑚2

𝜔𝜔𝑚𝑚2
+
𝑚𝑚𝑣𝑣12

𝜔𝜔𝑚𝑚2
. 

This allows us to express the effective inertia in terms of the individual components of the system. 

We can simplify this expression to represent the effective inertia seen by the motor as: 



𝐽𝐽 = 𝐽𝐽0 +
𝑚𝑚 ⋅ 𝑣𝑣1
𝜔𝜔𝑚𝑚2

. 

Here, J0 signifies the original moment of inertia, while the additional term accounts for the 

translational load that is in motion with a velocity of v1. The ratio of 𝑣𝑣1
𝜔𝜔𝑚𝑚
2  is utilized to transform 

the mass of the translational load into its equivalent rotational mass, effectively represented as a 

moment of inertia. 

Now, let’s discuss the effective load torque. To understand the effective load torque, we first need 

to evaluate the power perceived by the motor. The power seen by the motor can be expressed as: 

𝑃𝑃 = 𝑇𝑇𝐿𝐿 ⋅ 𝜔𝜔𝑚𝑚. 

This power consists of the contribution from load 0, represented as 𝑇𝑇𝐿𝐿0 ⋅ 𝜔𝜔𝑚𝑚, and the power 

associated with the translational load. The power corresponding to the translational load can be 

calculated as the force F1 multiplied by the velocity v1. Thus, we have: 

𝑃𝑃trans = 𝐹𝐹1 ⋅ 𝑣𝑣1. 

However, we must account for the coupling efficiency, denoted as η1. Therefore, we divide by 

this coupling efficiency: 

𝑃𝑃eff =
𝑇𝑇𝐿𝐿0 ⋅ 𝜔𝜔𝑚𝑚 + 𝐹𝐹1 ⋅ 𝑣𝑣1

𝜂𝜂1
. 

Next, we can express the effective load torque seen by the motor as: 

𝑇𝑇𝐿𝐿 =
𝑇𝑇𝐿𝐿0 ⋅ 𝜔𝜔𝑚𝑚
𝜔𝜔𝑚𝑚

+
𝐹𝐹1 ⋅ 𝑣𝑣1
𝜂𝜂1 ⋅ 𝜔𝜔𝑚𝑚

= 𝑇𝑇𝐿𝐿0 +
𝐹𝐹1
𝜂𝜂1
⋅
𝑣𝑣1
𝜔𝜔𝑚𝑚

. 

This expression captures the effective load torque perceived by the motor when dealing with a 

translational load. In the case of a translational load, it is essential to take into account the ratio 

of linear velocity to angular velocity, as this ratio will facilitate the transformation of both the 

inertia and the load torque into their appropriate equivalents. 

Now, when we discuss load torque, it’s essential to examine its various components. We will be 

delving into the intricacies of load torque components. Imagine we have a motor driving a load; 

these two elements are mechanically coupled. The motor is rotating in one direction, generating 



a motor torque, denoted as T, while the load presents an opposing torque, referred to as TL. 
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So, what are the components of the load torque TL? It is typically composed of two primary parts. 

The first component is known as the friction component, denoted as TF, and the second 

component is the useful load torque, represented as TL itself.  

To clarify further, TF is the friction torque, while TL is the useful load torque, which serves as a 

fixed and integral part of any mechanical system. It is crucial to understand that no mechanical 

system can function effectively without friction. 

When we discuss friction, we recognize that there are several types contributing to the total 

friction torque TF. This total friction can be categorized into several components: the first is static 

friction, denoted as TS; the second is Coulomb friction, represented as TC; the third type is viscous 

friction, referred to as TV; and the fourth type is windage friction, labeled as TW.  

In summary: 

• TS is the static friction, 

• TC is the Coulomb friction, 

• TV is the viscous friction, 

• TW is the windage friction. 



These components collectively define the total friction torque TF that impacts the performance of 

the mechanical system. 

We primarily have four types of friction: static friction, Coulomb friction, viscous friction, and 

windage friction.  

Static friction occurs only when motion has not yet commenced, specifically, when the motor 

speed is zero. This type of friction is significant in standstill conditions or during very low-speed 

scenarios, making it a crucial component when transitioning from a state of rest to motion. Thus, 

static friction is only present during the range from zero to low speeds. 

On the other hand, Coulomb friction is unique in that it remains constant regardless of the speed. 

Whether the motor is at rest, operating at a medium speed, or running at high speed, Coulomb 

friction does not vary; it is independent of speed. 

When we turn our attention to viscous friction, we find that it is directly proportional to the speed 

of the system. In contrast, windage friction behaves differently; it is proportional to the square of 

the speed. To summarize, while viscous friction increases linearly with speed, windage friction 

escalates with the square of the speed. 
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Now, let’s explore these four types of friction, static friction, Coulomb friction, viscous friction, 

and windage friction, by plotting a graph in the speed-torque plane. This will allow us to visualize 

the various friction components and their relationships more clearly. The components of these 



frictions will be represented in this graphical analysis. 

Let’s begin by establishing our graph. We have the origin here, and we are plotting the friction 

components on this speed-torque plane. The y-axis represents speed, while the x-axis represents 

friction torque.  

First, let’s consider static friction. This frictional torque is present when the speed is zero, which 

indicates that static friction exists at that point. As the speed begins to increase, however, the 

static friction gradually decreases until it ultimately becomes zero. This behavior can be 

represented as TS reaching zero as the speed approaches a positive value. Interestingly, when the 

speed is negative, the torque also becomes negative, reflecting the opposing direction of the 

frictional force. So, we have two plots for static friction: one for positive speeds and another for 

negative speeds. 

Now, let's move on to Coulomb friction. Unlike static friction, Coulomb friction does not depend 

on speed; it remains nearly constant across the entire range of operation. Thus, we can describe 

TC as independent of speed. Similarly, when the speed is negative, the Coulomb friction torque 

also becomes negative, illustrating its consistent nature regardless of speed. 

Next, we have viscous friction. This type of friction is directly proportional to speed, which we 

can illustrate as a linear relationship on our graph. This line represents viscous friction TV.  

Finally, we come to windage friction. This friction behaves differently; it is proportional to the 

square of the speed. When we plot windage friction, we will observe a curve reflecting this 

quadratic relationship. As the speed increases, the windage torque escalates with the square of 

the speed, demonstrating its unique nature in comparison to the others. 

Now, when we sum all these friction components together, we can derive the overall behavior of 

the frictional torque in our system. This comprehensive view allows us to understand how each 

type of friction contributes to the overall dynamics of the system as speed varies. 

Now, let’s take a closer look at the overall behavior of the frictional torque, which can be 

illustrated in a plot. Initially, we see that static friction gradually decreases until it eventually 

vanishes. On the negative side, static friction behaves similarly, increasing in the opposite 

direction. In this context, the y-axis represents speed, while the x-axis denotes torque, specifically 

the frictional torque. This plot captures the dynamic behavior of frictional torque. 



At rest, when the motor is stationary, all types of friction come into play. Here, static friction and 

Coulomb friction are present, while both viscous friction and windage friction are zero. As the 

speed begins to increase, we observe that viscous friction and windage friction start to rise, while 

Coulomb friction remains constant. In contrast, static friction gradually disappears. This 

relationship gives us a clear picture of how frictional torque behaves throughout different 

operating conditions. 

It's important to note that friction is classified as a passive load. We refer to friction as a passive 

load because it responds to changes in speed direction; essentially, it always opposes motion. The 

defining characteristic of a passive load is that when the speed direction changes, the torque also 

reverses. Therefore, any torque that reverses with changes in speed direction is classified as a 

passive load.  

Specifically, the direction of frictional torque is contingent upon the direction of speed. When the 

speed reverses, friction must also reverse to ensure that it continues to oppose that speed. This 

foundational understanding sets the stage for our discussion on the friction components of load 

torque. 

Now, let’s shift our focus to the useful load torque. We will explore the various types of useful 

load torque that exist in electric drives.  
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Let’s delve into the nature and classification of useful load torque. When we refer to useful load 



torque, it is essential to understand that this torque must perform some beneficial work. The first 

type of load we encounter is the fan type of load. Fans, as they rotate, generate airflow, which is 

incredibly useful in various applications. However, it’s important to note that while the fan 

provides this wind, it also exerts a torque on the motor. Thus, we categorize this type of load as 

belonging to the fan, pump, and compressor categories. 

Now, if we examine the load torque behavior, denoted as TL versus ωm (where ωm represents 

speed), we find that the useful load torque TL for fans, pumps, and compressors is proportional 

to the square of the speed. In other words, we can express this relationship as 𝑇𝑇𝑙𝑙 ∝ 𝜔𝜔𝑚𝑚2 .  

Next, we move on to the second type of load torque, known as hoist load torque. Here, we have 

a cage being lifted against the force of gravity. This scenario introduces a constant gravitational 

torque; however, it can be further classified into two subtypes: low-speed hoist and high-speed 

hoist.  

For a low-speed hoist, the torque remains nearly constant and is independent of the speed. When 

we plot the load torque against speed, placing speed on the y-axis and torque on the x-axis, we 

observe that the torque for a low-speed hoist is virtually constant, not varying significantly with 

speed. This constancy arises because the gravitational pull Mg (where M is mass and g is the 

acceleration due to gravity) remains unchanged regardless of the speed. 
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As the speed increases, we transition into the realm of high-speed hoisting. Here, the 



characteristics of the load torque change, leading to different operational behaviors.  

In high-speed hoisting, the situation is somewhat different. We observe the load torque plotted 

against the speed, ωm. For high-speed hoisting, the torque initially remains constant. However, 

as the speed increases, both viscous friction and windage friction come into play. Consequently, 

for high-speed hoisting, we see the torque profile rising as the speed increases. 

Now, let's turn our attention to another type of load: the traction load. This load is primarily 

associated with electric vehicles and locomotives, commonly referred to as traction loads. So, 

how does the traction load behave with respect to speed?  

When we discuss traction loads, it’s important to note that maximum torque is typically generated 

at startup. At this moment, the machine faces significant static friction that must be overcome. 

This high level of static friction characterizes the traction load, and as the speed increases, this 

friction decreases.  

As the speed continues to rise, we also encounter additional factors like windage friction. 

Nevertheless, traction loads are particularly characterized by this considerable amount of static 

friction, which must be surmounted initially. As a result, the torque required at startup is 

predominantly due to overcoming static friction. Therefore, we can say that the starting torque is 

primarily influenced by this static friction component, leading to a dynamic interaction as the 

vehicle accelerates. 
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We also encounter other types of loads; for instance, consider a constant power load. A perfect 

example of this is a coiler drive, which is responsible for winding cloth onto a roll. As the cloth 

is being coiled, the diameter of the roll increases. In this scenario, we have the coiler mechanism 

rotating, and the material being coiled also rotates, generating tension, denoted as FT. This setup 

is associated with a linear velocity, v. 

It's essential to maintain FT as constant throughout this process. This means both the tension and 

the linear velocity must remain constant. The coiler also has an angular velocity, represented as 

ωm. Now, what is ωm? Simply put, it can be defined as 𝑣𝑣
𝑟𝑟
, where r is the radius of the coil. 

Therefore, we can express the relationship as 𝑇𝑇 ⋅ 𝑣𝑣 being constant, which leads us to FT. Since v 

is equal to 𝑟𝑟 ⋅ 𝜔𝜔𝑚𝑚, we can derive that 𝐹𝐹𝑇𝑇 ⋅ 𝑟𝑟 = Torque ⋅ 𝜔𝜔𝑚𝑚, which is equal to a constant value. 

For a constant power drive, the power remains unchanged. Power is defined as the product of 

torque and speed, so when we keep both torque and speed constant, we obtain a constant power 

load. The speed-torque characteristic for this type of load can be depicted graphically, with speed 

plotted on the y-axis and torque on the x-axis. The relationship looks like this: 𝑇𝑇𝐿𝐿 ⋅ 𝜔𝜔𝑚𝑚 remains 

constant. When we assert that the product of torque and speed is constant, we indeed describe a 

constant power drive, where P remains unchanged. 

In summary, we've explored various types of useful load torques. We began by discussing the 

frictional component, then moved on to the fan type load, where the load torque is proportional 

to the square of the speed. Next, we examined the low-speed hoist, where the torque remains 

primarily constant, followed by the high-speed hoist, where torque increases with speed.  

We also covered the traction load, characterized by a significant amount of starting torque; as the 

speed increases, we have to account for factors like viscous friction and windage friction. Finally, 

we looked at the constant power load, where the product of torque and speed needs to remain 

constant. So, we stop here for today's lecture, we will continue in the next class. 


