
Fundamentals of Electric Drives 

Prof. Shyama Prasad Das 

Department of Electrical Engineering, 

Indian Institute of Technology, Kanpur 

Lecture-31 

Various types of synchronous motors, Equivalent circuit and phasor diagram of 

cylindrical synchronous motor, Speed-torque characteristics of cylindrical synchronous 

motor 

Hello and welcome to this lecture on the fundamentals of electric drives. In our previous 

session, we delved into synchronous motors, exploring the two main categories: wound-field 

synchronous motors and permanent magnet synchronous motors. Today, we will begin by 

discussing these types in greater detail, examining their characteristics, applications, and 

operational principles. Let’s dive deeper into the various forms of synchronous motors to better 

understand how each functions and where they are most effectively employed. 

(Refer Slide Time: 00:38) 

 

As we have already discussed, a wound-field synchronous motor can be categorized into two 

types: the cylindrical rotor and the salient pole rotor. In the case of a cylindrical rotor, the air 

gap is uniform, allowing for a consistent magnetic field. Here, the windings are placed around 

the rotor, which has a cylindrical shape, enabling the rotor to produce a magnetic flux 

effectively. This design is referred to as a cylindrical rotor synchronous motor. 

Conversely, in a salient pole rotor, the windings are arranged around protruding poles, creating 

what are known as salient poles. When we apply the Ampère's thumb rule, we can determine 

that the current flowing through these windings generates a magnetic flux in a specific 



direction. Typically, cylindrical rotors are preferred for higher-speed applications due to their 

ability to withstand greater centrifugal forces. On the other hand, salient pole rotors are more 

suited for lower-speed applications, where their structure can be more effective. 

In these motors, the rotor generates a direct current (DC) flux, as opposed to an induction 

motor, where the rotor operates differently. The DC flux is produced through DC windings on 

the rotor. If we replace these physical DC windings with permanent magnets, we create what 

is known as a permanent magnet synchronous motor.  

Permanent magnet synchronous motors can take various forms, one of which is the surface 

mount permanent magnet synchronous motor. This type can be further divided into projecting 

and inset types. In a projecting type permanent magnet synchronous motor, the magnets are 

affixed to the surface of the rotor, projecting outward. These magnets are typically secured 

using epoxy glue and locking arrangements to ensure they remain in place during operation. 

For example, in a four-pole structure, we would see an arrangement of north and south poles, 

alternating as north, south, north, and south. However, it's important to note that permanent 

magnets cannot be achieved in a single pole configuration. 

In the configuration of a projecting type permanent magnet synchronous motor, we observe a 

north pole situated above and a south pole positioned below. The arrangement alternates, with 

the south pole of the permanent magnet below the north pole. This setup is characteristic of the 

projecting type, where the magnets extend outward from the rotor surface. 

On the other hand, in an inset type permanent magnet synchronous motor, the magnets are 

embedded within the rotor but still align with its surface. This design allows for slightly higher 

operational speeds since the magnets do not protrude outward, reducing potential drag. In this 

configuration, we see the north and south poles similarly positioned, with the north pole facing 

the surface to generate flux in a specified direction, while the corresponding south pole is 

located adjacent to it. 

Additionally, we have another variation known as the interior permanent magnet synchronous 

motor. In this design, the magnets are buried deeper within the rotor, offering enhanced 

protection. The arrangement of the interior permanent magnets provides a distinct set of 

advantages, including improved efficiency and robustness in performance. This structure 

ensures that the magnets are shielded from external damage while maintaining optimal 

performance characteristics. 
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Now, let’s delve into the interior permanent magnet synchronous motor (IPMSM). In this 

design, we have the rotor structure prominently featuring the magnets embedded entirely within 

the rotor itself. Here, you can see one magnet positioned next to another, ensuring that all 

magnets remain contained within the rotor. For example, if we designate one end as the north 

pole and the other as the south pole, the arrangement of these magnets guarantees that they are 

securely housed, preventing any risk of them flying off during operation. 

The interior permanent magnet synchronous motors are particularly well-suited for higher-

speed applications. Since the magnets are enclosed within the rotor, they enjoy greater 

protection against external forces, making them less susceptible to demagnetization. 

Additionally, to facilitate efficient magnetic flux flow, we incorporate non-magnetic strips 

strategically placed to allow the flux to traverse the air gap. These non-magnetic strips ensure 

that the magnetic flux exits the north pole and enters the south pole seamlessly. 

The flux path can be visualized as the magnetic flux emerging from the north pole and flowing 

into the south pole, similar to the flow pattern observed in the adjacent magnets. This effective 

magnetic circuit design significantly enhances the overall performance of the motor. 

Furthermore, the interior permanent magnet synchronous motors have gained immense 

popularity, especially in electric vehicle applications, where their efficiency and reliability are 

paramount. 

With this understanding, let us now return to derive some fundamental equations that govern 



the operation of synchronous motors. 

Let’s begin our discussion with the cylindrical rotor synchronous motor, where the field 

configuration is cylindrical, and we have windings located in the field. Our goal is to derive 

the equations governing a cylindrical rotor wound field synchronous motor.  

For simplicity, we will neglect stator losses in our analysis. Thus, the equivalent circuit per 

phase can be described as follows. In this equivalent circuit, we have omitted the stator losses, 

focusing instead on the synchronous reactance present in the stator. This leads us to consider 

the induced electromotive force (EMF) along with the applied voltage. 

In this circuit, we denote the induced EMF as E, which lags behind the applied voltage V 

(represented as the voltage phasor) by an angle δ. It is important to remember that this phase 

lag occurs due to the nature of motor operation. Therefore, if we assume that the applied voltage 

V is at an angle of 0, the relationship can be expressed as: 

𝐸𝐸 =  𝐸𝐸 ∠ − 𝛿𝛿 

For input power calculations, we focus on the single-phase scenario first. The input power can 

be represented as: 

𝑃𝑃𝑖𝑖𝑖𝑖 = 3𝑉𝑉 ⋅ 𝐼𝐼𝑠𝑠 ⋅ cos(𝜃𝜃) 

Here, θ is the angle between the voltage V and the stator current Is. Given that we have 

neglected any losses in our system, the output power, denoted as Pout, is equivalent to the 

mechanical power Pm. In essence, we can conclude: 

𝑃𝑃𝑖𝑖𝑖𝑖 = 𝑃𝑃𝑜𝑜𝑜𝑜𝑜𝑜 = 𝑃𝑃𝑚𝑚 

This indicates that the input power is equal to the mechanical output power, as we have 

assumed a lossless system, meaning there are no core losses and we can disregard friction 

associated with the mechanical load. 

Next, we can illustrate the phasor diagram for this circuit. When constructing the phasor 

diagram, we must write down the vector equation reflecting the relationships among the applied 

voltage, current, and induced EMF. We can express this relationship using Kirchhoff’s voltage 

law (KVL): 



𝑉𝑉 = 𝐼𝐼𝑠𝑠 ⋅ 𝑗𝑗𝑋𝑋𝑠𝑠 + 𝐸𝐸 

Alternatively, we can rearrange this to find the induced EMF: 

𝐸𝐸 = 𝑉𝑉 − 𝑗𝑗𝐼𝐼𝑠𝑠𝑋𝑋𝑠𝑠 

This equation allows us to determine the induced EMF by subtracting the voltage drop across 

the synchronous reactance from the applied voltage. Through this process, we gain valuable 

insights into the operation of the cylindrical rotor synchronous motor. 
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Let’s delve into the details of our analysis. To illustrate this, let’s assume we have a voltage 

phasor V and that the current Is is lagging behind the voltage by an angle θ. In this scenario, 

we can visualize Is as the current phasor, with θ representing the phase difference in our right-

angled triangle. Our objective now is to determine the induced EMF, which we can express as 

-j Is Xs.  

To complete our phasor diagram, we denote the induced EMF as E, with the angle δ associated 

with it. Therefore, we can represent this as 𝐸𝐸 =  𝐸𝐸 ∠ − 𝛿𝛿, illustrating that E lags behind the 

voltage by the angle δ. 

The applied voltage V is our reference, positioned at an angle of 0 degrees. Given this setup, 

we can derive an expression for 𝐼𝐼𝑠𝑠 cos 𝜃𝜃. The current flowing in the circuit, Is, can be formulated 

as: 



𝐼𝐼𝑠𝑠 =
𝑉𝑉 − 𝐸𝐸
𝑗𝑗𝑋𝑋𝑠𝑠

 

This equation signifies that the current phasor Is is derived from the difference between the 

applied voltage V and the induced EMF E, divided by the reactance Xs. 

Substituting our values into the equation, we find: 

𝐼𝐼𝑠𝑠 =
𝑉𝑉∠0 − 𝐸𝐸∠ − 𝛿𝛿

𝑗𝑗𝑋𝑋𝑠𝑠
 

This gives us: 

𝐼𝐼𝑠𝑠 =
𝑉𝑉
𝑋𝑋𝑠𝑠
∠ −

𝜋𝜋
2
−
𝐸𝐸
𝑋𝑋𝑠𝑠
∠ − 𝛿𝛿 +

𝜋𝜋
2

 

In this complex equation, we identify the real and imaginary components. The reference phasor 

represents the baseline from which we evaluate our other phasors. 

Now, to find the real part of Is, we recognize that 𝐼𝐼𝑠𝑠 cos 𝜃𝜃 represents this real component. 

Hence, we can express it as: 

𝐼𝐼𝑠𝑠 cos𝜃𝜃 =
𝑉𝑉𝑚𝑚
𝑋𝑋𝑠𝑠

cos �
𝜋𝜋
2
� −

𝐸𝐸
𝑋𝑋𝑠𝑠

cos �𝛿𝛿 +
𝜋𝜋
2
� 

Simplifying this, we know that cos �𝜋𝜋
2
� = 0, leading us to focus on the second term. The cosine 

of 𝛿𝛿 + 𝜋𝜋
2
𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 − sin 𝛿𝛿, thus yielding: 

𝐼𝐼𝑠𝑠 cos𝜃𝜃 = −
𝐸𝐸
𝑋𝑋𝑠𝑠

sin 𝛿𝛿, 

Now that we have this relationship, we can apply it to calculate the output power Poutput. Recall 

that: 

𝑃𝑃𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 = 3𝑉𝑉𝐼𝐼𝑠𝑠 cos 𝜃𝜃, 

In this way, we prepare to substitute Is cos θ back into our equation to find the output power of 

the system. 

This leads us to the expression for mechanical output power in a cylindrical rotor synchronous 



machine, which can be represented as: 

𝑃𝑃𝑚𝑚 =
3𝑉𝑉𝐸𝐸 sin 𝛿𝛿

𝑋𝑋𝑠𝑠
 

To derive the torque from the mechanical power, we divide this mechanical power by the rotor 

speed. It’s important to note that the rotor speed is equivalent to the synchronous speed, as 

there is no slip in a synchronous machine. Therefore, we can state that the rotor speed is equal 

to the synchronous speed, denoted as ωs, given that the slip is zero. 

Now, let’s express the torque T: 

𝑇𝑇 =
𝑃𝑃𝑚𝑚
𝜔𝜔𝑠𝑠

=
3𝑉𝑉𝐸𝐸 sin 𝛿𝛿
𝑋𝑋𝑠𝑠𝜔𝜔𝑠𝑠

 

In this equation, V represents the applied voltage, which remains constant, and E signifies the 

excitation EMF or the induced EMF, which is also constant as long as the field is maintained 

at a constant level. 

When we operate the synchronous motor, we supply it with a constant voltage and a constant 

frequency from the source. In the case of a wound field synchronous motor, maintaining these 

constants is crucial for predictable performance. 

Now, if we consider the torque T, we can explore how it varies with respect to the torque angle 

δ. As we manipulate δ, the torque will change accordingly, while keeping the voltage, field, 

frequency, and speed constant. This gives us the opportunity to visualize this relationship 

graphically. 

In this scenario, we can plot the torque T against the torque angle δ. On the x-axis, we have δ, 

and on the y-axis, we plot the torque T. As δ varies, we can observe how the torque responds, 

illustrating the dynamic relationship between these two parameters in a synchronous machine. 

This graphical representation allows us to better understand the operational characteristics of 

the synchronous motor. 

As we observe the torque curve, we notice that it resembles a sine wave. When we adjust the 

value of the torque angle δ, the torque increases. In fact, as we increase δ, the torque continues 

to rise until it reaches its maximum value at 𝛿𝛿 = 𝜋𝜋
2
. This point represents the peak torque 

achievable by the synchronous motor. Beyond this maximum, if we continue to increase δ, the 



torque begins to decline. Thus, it’s important to recognize that there is a limit to how much 

torque we can generate; if we increase δ past this threshold, the torque will decrease. 

Furthermore, it’s noteworthy that δ can also take on negative values. This negative range is 

typically associated with braking and generating operations. In motoring mode, we operate 

with positive δ, but to switch to braking mode, we need to make the torque negative, which 

entails setting δ to a negative value. This transition effectively turns the motor into a generator, 

allowing for energy recovery during braking. 

Now, let’s discuss the benefits of having a separate field winding for our synchronous motor. 

The field winding is excited by a direct current (DC) source, denoted as Vf, which enables us 

to produce a consistent DC flux. This feature allows us to operate the synchronous motor under 

a variety of power factor conditions. Unlike induction motors, which always operate under a 

lagging power factor, a synchronous motor can be adjusted to operate at different power 

factors. By controlling the field current, we can achieve lagging, unity, or even leading power 

factors.  

Next, let's examine the phasor diagrams corresponding to these various power factor 

conditions, as they will provide valuable insight into the motor's operational characteristics. 
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Let's discuss the scenario of lagging power factors first. When we have a lagging power factor, 

we observe that the applied voltage is represented here, and the current Is lags behind this 



voltage. Our objective is to determine the induced electromotive force (EMF), denoted as E. 

The induced EMF can be calculated using the expression -j Is Xs, where all quantities are 

represented as phasors. In this context, E is generated by the field winding, and we have the 

torque angle, δ. For the motor, the induced EMF E lags behind the voltage by this angle δ. 

Now, let's consider the case where the power factor is unity. In a unity power factor scenario, 

the voltage and current are perfectly in phase. This means that we have a voltage phasor here, 

and the current phasor Is aligns exactly with it. The induced EMF E remains consistent, and in 

this case, the torque angle δ represents the angle between the voltage and the induced EMF. 

For unity power factor operation, the angle θ is 0, indicating that V and Is are in phase.  

Next, we can explore how the motor operates under a leading power factor. For leading power 

factor operation, we need to over-excite the field winding, which increases the field current. 

Here, we have the voltage V, and the current Is now leads the voltage by an angle θ. It's 

important to note that this creates a 90∘ phase angle drop across the reactance. Again, we can 

express this as -j Is Xs. If we connect these two points, we can determine the induced EMF E, 

and once more, the torque angle δ indicates that E lags behind the voltage by this angle. 

What we observe here is quite interesting: when the value of E is relatively low, we operate 

under a lagging power factor. As the value of E increases to a moderate level, we approach 

unity power factor. Finally, when E becomes significantly higher, essentially when we have 

over-excitation, we operate under a leading power factor.  
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This flexibility in power factor operation is a distinct advantage of using a wound field 

synchronous machine. Now, let's move on to examine the speed-torque characteristics of a 

wound field synchronous machine. 

We've previously established that the torque is given by the relationship 𝑇𝑇 = 𝑃𝑃𝑚𝑚
𝜔𝜔𝑚𝑚

= 3𝑉𝑉𝐸𝐸
𝑋𝑋𝑠𝑠

sin 𝛿𝛿. 

This holds true in a constant frequency application. Now, let’s visualize this by plotting the 

torque characteristics on a graph, where we have the speed axis and the torque axis.  

In this scenario, the torque is independent of speed, which remains constant. Since we are 

working with a synchronous motor supplied from a constant frequency source, the motor speed, 

denoted as ωm s, remains stable. Thus, we have a constant speed motor in operation. This means 

that under these conditions, the speed of the motor does not vary; it is not a variable speed 

operation.  

The torque, however, can take on both positive and negative values. As we've discussed, a 

positive torque indicates motoring, while a negative torque indicates braking. The maximum 

torque, 𝑇𝑇max, corresponds to a maximum angle δ of 𝜋𝜋
2
. This defines the operating range for the 

motor; beyond this angle, we enter an unstable region. So, we have a stable operational area 

and an unstable one. 

The maximum torque that can be achieved is denoted as 𝑇𝑇max. This value can also be applicable 

when the motor is in braking mode, allowing operation down to -𝑇𝑇max, which corresponds to 

𝛿𝛿 = −𝜋𝜋
2
. To summarize, for 𝛿𝛿 = + 𝜋𝜋

2
, we operate at +𝑇𝑇max, and for 𝛿𝛿 = −𝜋𝜋

2
, we operate at 

−𝑇𝑇max. This range of operation, from 𝑇𝑇max to -𝑇𝑇max, defines our first quadrant of torque 

characteristics. 

We refer to this operation as motoring, while the operation occurring in the second quadrant is 

designated as braking. In both cases, the speed remains constant, as we are dealing with a motor 

supplied from a fixed frequency source. Now, let's delve into the analysis of a salient pole 

synchronous motor.  

For a salient pole synchronous motor, which is essentially a wound field synchronous motor, 

we need to draw the equivalent circuit. This is crucial because the air gap in this type of motor 

is non-uniform due to the presence of salient poles. In this configuration, we have one direct 

axis (d-axis) and one quadrature axis (q-axis). 



The rotor construction is distinctly different; it features salient poles, and the stator surrounds 

this structure. This setup gives us a clear distinction between the direct axis, where the windings 

are located in the rotor, and the DC voltage applied through slip rings, denoted as Vf. The 

current flowing in the field winding is represented by If, producing flux along the direct axis 

due to its alignment with the poles. 

In addition to the direct axis, we have a quadrature axis, which lies at a right angle to the direct 

axis. This means that the air gap is smaller along the direct axis compared to the quadrature 

axis. To illustrate, we can envision the rotor encased within a cylindrical stator. Consequently, 

the air gap is reduced along the direct axis while being larger along the quadrature axis. 

In this context, we have two synchronous reactances: one aligned with the direct axis, labeled 

Xs d, and the other aligned with the quadrature axis, denoted Xs q. This is in contrast to a 

cylindrical machine, where there is only a single synchronous reactance, Xs. In a salient pole 

synchronous machine, the presence of non-uniform air gaps necessitates two distinct 

synchronous reactances. 

As a result, we cannot derive a single equivalent circuit for a salient pole synchronous machine. 

Instead, we must utilize two equivalent circuits to analyze the machine's performance. We will 

resolve the magnetomotive force (MMF) along both the d-axis and the q-axis to ascertain the 

respective fluxes and calculate the induced EMF. 

We will conclude our discussion here for today’s lecture, and in our next session, we will 

explore further details regarding the salient pole synchronous machine. 


