
Fundamentals of Electric Drives 

Prof. Shyama Prasad Das 

Department of Electrical Engineering 

Indian Institute of Technology – Kanpur 

Lecture - 04 

Steady State Stability, Load Equalization 

Hello and welcome to this lecture on fundamental of electric drives. Today, we will be 

discussing about the steady state stability of the drive system. 
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We know that when a motor drives a load, the speed remains constant in steady-state operation, 

meaning there is no acceleration, or mathematically, 𝑑𝑑𝜔𝜔𝑚𝑚
𝑑𝑑𝑑𝑑

= 0. Picture a motor driving a load 

via a mechanical shaft, which couples the motor to the load. The motor speed ωm matches the 

load speed, while the motor torque T is counteracted by the opposing load torque Tl. The total 

moment of inertia of the entire system is denoted by J. 

In the previous lecture, we discussed that for such a motor-load system, we can express the 

dynamics with a fundamental equation of motion. The equation is written as: 

𝐽𝐽
𝑑𝑑𝜔𝜔𝑚𝑚
𝑑𝑑𝑑𝑑

+ 𝑇𝑇𝐹𝐹 + 𝑇𝑇𝐿𝐿 = 𝑇𝑇 



Here, 𝐽𝐽 𝑑𝑑𝜔𝜔𝑚𝑚
𝑑𝑑𝑑𝑑

 represents the inertial torque (proportional to angular acceleration), TF is the 

viscous friction or frictional torque, and Tl is the useful load torque. Together, these terms must 

balance the motor torque T. 

To simplify, we assume there is no friction, or we can combine the frictional torque into the 

load torque Tl, which gives us the simplified version of the equation. Now, in steady state, since 
𝑑𝑑𝜔𝜔𝑚𝑚
𝑑𝑑𝑑𝑑

= 0, the inertial torque vanishes. This leads us to the steady-state condition: 

𝑇𝑇𝐿𝐿 = 𝑇𝑇 

In other words, the load torque equals the motor torque when the system is in steady-state 

equilibrium.  

To determine the operating point of the motor-load system, we look at the speed-torque 

characteristic curves. On a speed-torque plane, with ωm on the x-axis and torque T on the y-

axis, the operating point is found at the intersection of the motor's characteristic curve and the 

load's characteristic curve. The motor will operate at the speed corresponding to this 

intersection, with the corresponding torque as well.  
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Now, the important question arises: Is this operating point stable or unstable? This is critical to 

determine because a stable operating point means that if there are slight disturbances, the 

system will return to equilibrium, while an unstable point would cause the system to deviate 



further from equilibrium. 

Next, let's explore how we can analyze and decide whether this intersection point is stable or 

unstable. 

Let's consider two examples to illustrate this concept. We have a graph with speed, ωm, on the 

y-axis and torque, T, on the x-axis. In both cases, the motor's characteristic curve is represented 

by T, and the load characteristic is represented by Tl. In the first example, the intersection of 

the motor and load curves occurs at point A, and in the second example, the intersection is at 

point B. These points, A and B, represent potential operating points of the system. 

Now, our task is to determine which of these equilibrium points, A or B, is stable, and which 

one is unstable. At both points, we have the condition T = Tl, meaning the motor torque matches 

the load torque, indicating an equilibrium. However, we need to analyze how the system 

behaves if we introduce a small disturbance around these points, specifically a change in speed. 

Let's say we slightly increase the speed from its equilibrium value at one of these points, for 

example, from point A. This disturbance in speed results in a change in torque. If we increase 

the speed by a small amount, Δ𝜔𝜔𝑚𝑚, we move from the initial speed ωm1 to a new speed 𝜔𝜔𝑚𝑚1 +

Δ𝜔𝜔𝑚𝑚. 

Now, examine the situation after this speed change. The motor torque T decreases, but the load 

torque Tl remains higher than the motor torque, creating a situation where T < Tl. This 

imbalance means that the load is exerting more torque than the motor can provide. 

So, what happens in this situation is that the system exhibits a tendency for the speed to 

decrease when disturbed because the load torque exceeds the motor torque. Since the motor 

torque is insufficient to match the load, the load naturally slows the motor down, causing the 

speed to drop. As the speed decreases, the system will eventually return to the original 

equilibrium point.  

Now, consider disturbing the speed in the opposite direction by the same amount, Δ𝜔𝜔𝑚𝑚, but 

this time decreasing it. This brings us to a new equilibrium point at 𝜔𝜔𝑚𝑚1 − Δ𝜔𝜔𝑚𝑚. At this lower 

speed, the motor torque is higher than the load torque, meaning the motor now exerts more 

force than the load requires. As a result, the motor will accelerate the load, causing the speed 

to increase. This behavior will continue until the speed stabilizes back at the original 



equilibrium point.  

Therefore, in this case, point A is a stable equilibrium point. Any disturbance, whether 

increasing or decreasing the speed, will naturally bring the system back to this point, making 

it stable. 

Now, let’s analyze point B. Here, we again observe the intersection of the motor and load 

characteristics at an equilibrium point. Initially, the system operates at ωm2 and the 

corresponding torque T2, with the motor torque matching the load torque. When we introduce 

a disturbance by increasing the speed slightly by Δωm, the new speed becomes 𝜔𝜔𝑚𝑚2 + Δ𝜔𝜔𝑚𝑚. 

At this increased speed, we find that the motor torque is greater than the load torque. 

However, at this point, the motor will try to further accelerate the load because the motor torque 

exceeds the load’s demand. This means the speed will continue to rise instead of stabilizing, 

causing the system to move away from the equilibrium point. This behavior indicates that point 

B is an unstable equilibrium point because any disturbance causes the system to deviate from 

its original state.  

Thus, while point A is a stable equilibrium point, point B is unstable due to the system's 

tendency to move away from it when disturbed. 

So, in this scenario, when the motor torque T is greater than the load torque Tl, the motor exerts 

more power than the load requires. This imbalance causes the speed to keep increasing, leading 

to what we call divergence. The system, therefore, moves away from the equilibrium, and the 

speed will continuously rise, driving the system further from point B. This behavior shows that 

point B is an unstable equilibrium point. 

Now, consider what happens if we decrease the speed slightly by an amount Δωm. The new 

speed becomes ωm2 - Δωm, and in this case, the motor torque is less than the load torque. Since 

the motor provides less torque than what the load demands, the speed will continue to drop. As 

a result, the system will move away from point B, confirming that the operating point will 

diverge further, reinforcing the conclusion that point B is unstable. 

To summarize, we have two distinct scenarios. In the first case, the system reaches a stable 

equilibrium point where any disturbance, whether an increase or decrease in speed, will bring 

the system back to its original state. In the second case, the system reaches an unstable 



equilibrium point, where any deviation causes the system to drift away from the equilibrium. 

This observation means that not all motor and load combinations are stable. Some 

combinations will lead to a stable system, while others will result in instability. We’ve just 

explained and understood this behavior graphically, but can we also determine stability 

mathematically? 

Indeed, there is a mathematical rule for determining stability. The condition for stability is that 

if 𝑑𝑑𝑇𝑇𝑙𝑙
𝑑𝑑𝜔𝜔𝑚𝑚

 (the slope of the load torque curve) is greater than 𝑑𝑑𝑇𝑇
𝑑𝑑𝜔𝜔𝑚𝑚

 (the slope of the motor torque 

curve) at the equilibrium point, then the equilibrium point is stable. This condition serves as a 

criterion for stability. 

If the condition is satisfied, we classify the equilibrium point as stable. If the condition is not 

met, we identify the equilibrium point as unstable. Now, let us proceed to prove this 

mathematically. 
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Let's examine the motor torque equation, which is represented by the load torque plus the 

inertial torque 𝐽𝐽 𝑑𝑑𝜔𝜔𝑚𝑚
𝑑𝑑𝑑𝑑

, i.e., 

𝑇𝑇 = 𝑇𝑇𝑙𝑙 + 𝐽𝐽
𝑑𝑑𝜔𝜔𝑚𝑚
𝑑𝑑𝑑𝑑

 

Now, let’s introduce a small perturbation, a slight disturbance to the system. This results in a 



modified, perturbed equation, which reflects the change in system behavior. If we call the 

original equation as equation (1) and the perturbed equation as equation (2), we can subtract 

equation (1) from equation (2) to derive the small signal model. 

When we perform this subtraction, we obtain the small signal equation: 

Δ𝑇𝑇 = Δ𝑇𝑇𝑙𝑙 + 𝐽𝐽
𝑑𝑑
𝑑𝑑𝑑𝑑

(Δ𝜔𝜔𝑚𝑚) 

This equation captures the small changes, or perturbations, in motor torque ΔT, load torque 

ΔTl, and angular velocity Δωm. This small signal equation plays a critical role in determining 

the stability of the system. 

Next, let’s analyze the changes in torque due to perturbations. We know that ΔT, the change in 

motor torque, can be expressed as: 

Δ𝑇𝑇 =
𝑑𝑑𝑇𝑇
𝑑𝑑𝜔𝜔𝑚𝑚

Δ𝜔𝜔𝑚𝑚 

This represents the slope of the motor characteristic at the equilibrium point multiplied by the 

small perturbation Δωm. Similarly, for the load torque, we have: 

Δ𝑇𝑇𝑙𝑙 =
𝑑𝑑𝑇𝑇𝑙𝑙
𝑑𝑑𝜔𝜔𝑚𝑚

Δ𝜔𝜔𝑚𝑚 

This represents the slope of the load characteristic at the equilibrium point. These equations 

describe how small disturbances in speed affect the motor and load torques. 

Now, let's substitute these expressions for ΔT and ΔTl into our small signal equation. This gives 

us: 

𝑑𝑑𝑇𝑇
𝑑𝑑𝜔𝜔𝑚𝑚

Δ𝜔𝜔𝑚𝑚 =
𝑑𝑑𝑇𝑇𝑙𝑙
𝑑𝑑𝜔𝜔𝑚𝑚

Δ𝜔𝜔𝑚𝑚 + 𝐽𝐽
𝑑𝑑
𝑑𝑑𝑑𝑑

(Δ𝜔𝜔𝑚𝑚) 

We can further simplify this equation by isolating the terms involving Δωm: 

𝐽𝐽
𝑑𝑑
𝑑𝑑𝑑𝑑

(Δ𝜔𝜔𝑚𝑚) = �
𝑑𝑑𝑇𝑇
𝑑𝑑𝜔𝜔𝑚𝑚

−
𝑑𝑑𝑇𝑇𝑙𝑙
𝑑𝑑𝜔𝜔𝑚𝑚

�Δ𝜔𝜔𝑚𝑚 

Finally, we move everything to one side: 



𝐽𝐽
𝑑𝑑
𝑑𝑑𝑑𝑑

(Δ𝜔𝜔𝑚𝑚) + �
𝑑𝑑𝑇𝑇𝑙𝑙
𝑑𝑑𝜔𝜔𝑚𝑚

−
𝑑𝑑𝑇𝑇
𝑑𝑑𝜔𝜔𝑚𝑚

�Δ𝜔𝜔𝑚𝑚 = 0 

This is the simplified equation that we use to assess the stability of the system. 

Now, this is a crucial equation, as it is a first-order differential equation with respect to 
𝑑𝑑
𝑑𝑑𝑑𝑑

(Δ𝜔𝜔𝑚𝑚). To solve this equation, we must consider its structure. The solution will take the 

following form: 

Δ𝜔𝜔𝑚𝑚 = Δ𝜔𝜔𝑚𝑚0 �1 − exp �−
1
𝐽𝐽 �

𝑑𝑑𝑇𝑇𝑙𝑙
𝑑𝑑𝜔𝜔𝑚𝑚

−
𝑑𝑑𝑇𝑇
𝑑𝑑𝜔𝜔𝑚𝑚

� 𝑑𝑑�� 

Here, Δωm0 represents the initial disturbance in speed, and this expression gives the evolution 

of the speed disturbance over time. 

Now, let’s analyze the meaning of this result. If we disturb the system by a small amount Δωm0, 

eventually, as time progresses, the disturbance should vanish, meaning the system will return 

to its original equilibrium point. For that to happen, as 𝑑𝑑 → ∞, Δωm must tend to zero. 

In this case, for 𝛥𝛥𝜔𝜔𝑚𝑚 → 0 as 𝑑𝑑 → ∞, the coefficient in the exponential must be positive. This 

means the term 𝑑𝑑𝑇𝑇𝑙𝑙
𝑑𝑑𝜔𝜔𝑚𝑚

− 𝑑𝑑𝑇𝑇
𝑑𝑑𝜔𝜔𝑚𝑚

 should be positive. In other words: 

𝑑𝑑𝑇𝑇𝑙𝑙
𝑑𝑑𝜔𝜔𝑚𝑚

−
𝑑𝑑𝑇𝑇
𝑑𝑑𝜔𝜔𝑚𝑚

> 0 

This condition ensures that the exponential term decays to zero over time. Thus, if the motor 

speed is disturbed and left to stabilize, it will naturally return to the equilibrium point as 𝑑𝑑 →

∞, provided this condition holds. 

Additionally, since J, the moment of inertia, is always positive, the only requirement for 

stability is that: 

𝑑𝑑𝑇𝑇𝑙𝑙
𝑑𝑑𝜔𝜔𝑚𝑚

>
𝑑𝑑𝑇𝑇
𝑑𝑑𝜔𝜔𝑚𝑚

 

Therefore, we have mathematically proven that for the system to be stable, the slope of the load 

torque curve 𝑑𝑑𝑇𝑇𝑙𝑙
𝑑𝑑𝜔𝜔𝑚𝑚

 must be greater than the slope of the motor torque curve 𝑑𝑑𝑇𝑇
𝑑𝑑𝜔𝜔𝑚𝑚

. 
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For steady-state stability, we can express the condition as 𝑑𝑑𝑇𝑇𝑙𝑙
𝑑𝑑𝜔𝜔𝑚𝑚

> 𝑑𝑑𝑇𝑇
𝑑𝑑𝜔𝜔𝑚𝑚

. This means, at the 

equilibrium point, we must check whether this inequality holds. If it does, we can confidently 

say that the operating point is stable. Conversely, if the condition is not satisfied, we know the 

operating point is unstable.  

In an unstable scenario, any small disturbance will cause the speed to diverge, meaning it won't 

return to that equilibrium point. Therefore, it's essential to avoid unstable equilibrium points. 

Our goal should always be to ensure that the motor and load torque combination remains stable. 

Stability ensures that the system responds predictably and returns to equilibrium after any 

disturbances. 

Now, let’s move forward and discuss the concept of load equalization. What exactly do we 

mean by load equalization? As we’ve seen, loads can vary in nature, whether it's a fan load, a 

traction load, or a constant power load. But there are also special types of loads that are 

pulsating in nature. These loads don't maintain a constant torque; instead, the load torque 

fluctuates over time, increasing and decreasing periodically. 

Take, for instance, a sugarcane juice-making machine. When the sugarcane is being pressed 

through the machine, there’s a significant load torque applied. But when the sugarcane exits, 

the load torque drops to zero, and this cycle repeats continuously. A similar situation occurs in 

a steel rolling mill. As the ingot moves in and out of the rollers, the load torque pulses 



accordingly, resulting in a fluctuating or pulsating load. 
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To visualize this, imagine a load torque that oscillates over time. We can plot this on a graph, 

where the load torque varies between a high value and a low value over time. On the y-axis, 

we have the load torque, and on the x-axis, we have time. The torque reaches a high value, Th, 

for a period th, and then drops to a low value, Tl, for a period tl. This is a typical example of a 

pulsating load torque. 

Now, the important question arises: if we have such a pulsating load, how should we size the 

motor? Should the motor be selected based on the high value of the load torque or the low 

value? Ideally, the motor torque should be balanced somewhere between the high and low 

values, allowing it to supply the load torque in a smooth and manageable way. Therefore, the 

motor’s torque response should fluctuate in alignment with the varying load, ensuring it can 

handle both the high and low points effectively. 

The motor torque should neither be excessively high nor too low. We denote the motor torque 

as T, and the load torque as Tl, with the motor torque fluctuating between a minimum value, 

𝑇𝑇min, and a maximum value, 𝑇𝑇max. In steady-state operation, the motor torque oscillates between 

these two limits. But how do we achieve this controlled variation in torque? 

We achieve this by connecting a flywheel to the motor-load system. Imagine a motor connected 

to a load, and to stabilize the system, we attach a flywheel. Now, what exactly does the flywheel 



do? Essentially, it acts as a load equalizer. Even though the load torque fluctuates significantly, 

the motor torque variation is much less extreme because the flywheel absorbs and supplies the 

differential torque.  

In technical terms, the flywheel increases the system's effective inertia. With higher inertia, the 

motor-load combination can handle larger variations in load torque. The total system inertia, 

denoted as J, is now the combined inertia of both the motor and the flywheel. So, when we add 

a flywheel, we need to carefully calculate its required inertia. The key question becomes: what 

should the flywheel’s inertia be to achieve the desired values of 𝑇𝑇min and 𝑇𝑇max? 

To answer this, we can refer to the motor’s characteristic curve, which shows the relationship 

between speed and torque. On a graph where speed ωm is plotted on the y-axis and torque on 

the x-axis, the motor’s behavior typically follows a drooping profile. Understanding this 

behavior is crucial to determining the appropriate flywheel inertia. 

With that, we wrap up this discussion, and we will continue from this in the next lecture. 


