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Load Equalization, Characteristics of DC Motor 

Hello and welcome to this lecture on fundamental of electric drives. In the last lecture, we were 

discussing about the load equalization by connecting a flywheel. Today, we will continue from 

that lecture. 
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Now, in this scenario, we have connected a flywheel to the motor-load combination. Here is 

the flywheel, and the load torque exhibits a rectangular pattern; it is indeed a pulsating load 

torque. Our objective is to ensure that the motor torque fluctuates between a minimum value 

Tmin and a maximum value Tmax. We have been provided with the motor characteristics. 

The motor has a speed-torque characteristic, which is represented as a straight line. The 

equation describing this linear relationship is given by: 

𝜔𝜔𝑚𝑚 = 𝜔𝜔𝑚𝑚0 − 𝑘𝑘𝑘𝑘 

where T represents the torque. In this equation, ωm is the motor speed, and ωm0 is the no-load 

speed, the speed at which the motor operates when there is no load applied. 



Now, we need to utilize this motor characteristic to determine the inertia of the flywheel. Let's 

write down the dynamic equation. Starting with the motor characteristic: 

𝜔𝜔𝑚𝑚 = 𝜔𝜔𝑚𝑚0 − 𝑘𝑘𝑘𝑘 

we can differentiate this with respect to time to find: 

𝑑𝑑𝜔𝜔𝑚𝑚
𝑑𝑑𝑑𝑑

 

It is important to remember that ωm0 represents the no-load speed, which is the speed achieved 

when the load is zero. 

Now, since this is a constant quantity, the derivative will be equal to zero. What we derive from 

this is that -k is a constant, leading us to the term 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

, and we will apply our equation. The 

equation we have is: 

𝐽𝐽
𝑑𝑑𝜔𝜔𝑚𝑚
𝑑𝑑𝑑𝑑

+ 𝑘𝑘𝑙𝑙 = 𝑘𝑘 

This equation is quite well-known in the context of load and motor dynamics. Here, 𝐽𝐽 𝑑𝑑𝜔𝜔𝑚𝑚
𝑑𝑑𝑑𝑑

 

represents the inertial torque, Tl is the load torque, and T is the motor torque. 

Next, we substitute for 𝑑𝑑𝜔𝜔𝑚𝑚
𝑑𝑑𝑑𝑑

 using our earlier equation. Let’s denote this as Equation 1 and the 

motor equation as Equation 2. We can now derive Equation 3. By substituting for 𝑑𝑑𝜔𝜔𝑚𝑚
𝑑𝑑𝑑𝑑

 from 

Equation 2, we arrive at the expression: 

−𝑘𝑘𝐽𝐽
𝑑𝑑𝑘𝑘
𝑑𝑑𝑑𝑑

+ 𝑘𝑘𝑙𝑙 = 𝑘𝑘 

Rearranging this, we can write it in a more conventional form: 

𝑘𝑘𝐽𝐽
𝑑𝑑𝑘𝑘
𝑑𝑑𝑑𝑑

+ 𝑘𝑘 = 𝑘𝑘𝑙𝑙 

Ultimately, we have derived this equation. This represents a first-order differential equation in 

terms of T, the motor torque. Consequently, we need to solve this equation. Let's explore how 

we can approach solving it. 



(Refer Slide Time: 04:50) 

 

We have the equation: 

𝑘𝑘𝐽𝐽
𝑑𝑑𝑘𝑘
𝑑𝑑𝑑𝑑

+ 𝑘𝑘 = 𝑘𝑘𝑙𝑙 

This equation needs to be solved. Upon solving it, we arrive at the following solution: 

𝑘𝑘 = 𝑘𝑘initial + 𝑘𝑘final − 𝑘𝑘initial ⋅ �1 − 𝑒𝑒−
𝑑𝑑
𝜏𝜏𝑚𝑚� 

Here, we notice that a time constant is involved. In this equation, the time constant τm is defined 

as 𝑘𝑘 ⋅ 𝐽𝐽. Thus, we can express the solution as: 

𝑘𝑘 = 𝑘𝑘initial + 𝑘𝑘final − 𝑘𝑘initial ⋅ �1 − 𝑒𝑒−
𝑑𝑑
𝜏𝜏𝑚𝑚� 

Now, we need to determine what 𝑘𝑘initial 𝑎𝑎𝑎𝑎𝑑𝑑 𝑘𝑘final are. If we revisit the pulsating torque that we 

illustrated earlier, we can clarify this further. As shown before, this is a pulsating load torque 

that fluctuates between high and low values. We designate the high value as Tlh and the low 

value as Tll. 

Our goal is for the motor's behavior to align with this torque variation. Thus, if we plot the 

motor torque T alongside the load torque Tl, we want the motor torque to remain confined 

between Tmin and Tmax. This means that even though the load experiences significant 



fluctuations, the variation in motor torque is more or less smoothed out, staying within the 

limits of Tmin and Tmax. 

This curve represents an exponential relationship, oscillating between Tmin and Tmax. We refer 

to the duration during which the torque is high as th and the duration during which the torque 

is low as tl. The equation  

𝑘𝑘𝐽𝐽
𝑑𝑑𝑘𝑘
𝑑𝑑𝑑𝑑

+ 𝑘𝑘 = 𝑘𝑘𝑙𝑙 

is applicable to the motor behavior as it varies between Tmin and Tmax. For the initial time 

interval, let’s assume it ranges from 0 to tl. 

At this point, we can define Tinitial and Tfinal. So, what is Tinitial? Observing the curve, we find 

that Tinitial corresponds to Tmin, the minimum value of torque. Hence, we can conclude that 

Tinitial = Tmin. 

Next, let’s consider Tfinal. If the system continues to operate under the condition of high load 

torque, Tfinal will ultimately reach Tlh. Thus, we can say Tfinal = Tlh. 

Now, substituting these values into the earlier equation, we obtain: 

𝑘𝑘 = 𝑘𝑘min + 𝑘𝑘𝑙𝑙ℎ − 𝑘𝑘min ⋅ �1 − 𝑒𝑒−
𝑑𝑑
𝜏𝜏𝑚𝑚� 

This equation is valid for the time interval between 0 and tl.  

When we reach t = tl and t = th, we find that at t = th, the torque becomes Tmax. Thus, we can 

express this relationship at the high torque interval, which is crucial for understanding the 

dynamics of our system. 

When the time reaches the point where the torque actually attains Tmax, we can express this 

relationship as: 

𝑘𝑘max = 𝑘𝑘min + 𝑘𝑘𝑙𝑙ℎ − 𝑘𝑘min ⋅ �1 − 𝑒𝑒−
𝑑𝑑ℎ
𝜏𝜏𝑚𝑚� 

This equation serves as a foundation for determining the inertia. Rearranging the various terms, 

we have: 



𝑘𝑘max − 𝑘𝑘min = 𝑘𝑘𝑙𝑙ℎ − 𝑘𝑘min ⋅ �1 − 𝑒𝑒−
𝑑𝑑ℎ
𝜏𝜏𝑚𝑚� 

This can be further simplified to: 

1 − 𝑒𝑒−
𝑑𝑑ℎ
𝜏𝜏𝑚𝑚 =

𝑘𝑘max − 𝑘𝑘min

𝑘𝑘𝑙𝑙ℎ − 𝑘𝑘min
 

From this, after some algebraic manipulation, we can isolate the time constant τm. Thus, we 

find: 

𝜏𝜏𝑚𝑚 =
𝑑𝑑ℎ

ln �𝑘𝑘𝑙𝑙ℎ − 𝑘𝑘min
𝑘𝑘𝑙𝑙ℎ − 𝑘𝑘max

�
 

This expression gives us the value of the time constant τm. Since we know that the time constant 

is defined as kJ, we can equate: 

𝜏𝜏𝑚𝑚 = 𝑘𝑘𝐽𝐽 

From this, we can derive the value of J as follows: 

𝐽𝐽 =
𝑑𝑑ℎ

𝑘𝑘 ⋅ ln �𝑘𝑘𝑙𝑙ℎ − 𝑘𝑘min
𝑘𝑘𝑙𝑙ℎ − 𝑘𝑘max

�
 

This is how we can calculate the inertia of the system.  

It's important to note that this inertia is a combined inertia. We have a motor, a load, and a 

flywheel in our setup. Therefore, we can express the combined inertia J as: 

𝐽𝐽 = 𝐽𝐽𝑚𝑚 + 𝐽𝐽flywheel 

By understanding the total value of J and having knowledge of the motor inertia as well as the 

load inertia, we can effectively determine the inertia of the flywheel. 

The inertia of the flywheel can be expressed as the difference between the combined inertia 

and the inertia of the motor. Thus, we have: 

𝐽𝐽flywheel = 𝐽𝐽 − 𝐽𝐽𝑚𝑚 



This relationship ensures that the actual torque of the motor can fluctuate between Tmin and 

Tmax. This process is known as load equalization, where we connect a flywheel to help balance 

the load torque between these two values. 
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Now, let's take a moment to review the characteristics of a DC motor. We have already studied 

the fundamentals of DC motors, but we'll briefly revisit their characteristics, starting with the 

shunt motor.  

In a shunt motor, we have the armature and a resistance placed in the armature circuit, as well 

as a field circuit with its own resistance. Specifically, we denote the resistance of the armature 

as R and the resistance of the field circuit as Rf.  

When we apply a DC supply to both the armature and the field, the motor draws a current, 

denoted as I. This current is divided, with a portion flowing to the armature and the remaining 

portion supplying the field. 

Let's clarify the components involved in our discussion. Here, R represents the total resistance 

of the armature circuit, while Rf denotes the total resistance of the field circuit.  

We can derive some fundamental equations. First, let’s consider the current drawn from the 

DC power supply, denoted as I. This current is the sum of the armature current Ia and the field 

current If: 



𝐼𝐼 = 𝐼𝐼𝑎𝑎 + 𝐼𝐼𝑓𝑓 

In the armature circuit, we can express the applied voltage V in relation to the motor’s back 

electromotive force (EMF), E. The equation can be written as follows: 

𝑉𝑉 = 𝐸𝐸 + 𝐼𝐼𝑎𝑎 ⋅ 𝑅𝑅 

Now, what is this back EMF? The back EMF E is given by the formula: 

𝐸𝐸 = 𝑘𝑘 ⋅ 𝜙𝜙 ⋅ 𝜔𝜔𝑚𝑚 

where ωm represents the motor speed.  

Additionally, we have a torque equation that describes the torque produced by the motor: 

𝑘𝑘 = 𝑘𝑘 ⋅ 𝜙𝜙 ⋅ 𝜔𝜔𝑚𝑚 

These three equations encapsulate the core dynamics of a DC motor. To summarize, we have: 

1. The voltage equation:  

𝑉𝑉 = 𝐸𝐸 + 𝐼𝐼𝑎𝑎 ⋅ 𝑅𝑅 

2. The back EMF equation:  

𝐸𝐸 = 𝑘𝑘 ⋅ 𝜙𝜙 ⋅ 𝜔𝜔𝑚𝑚 

3. The torque equation:  

𝑘𝑘 = 𝑘𝑘 ⋅ 𝜙𝜙 ⋅ 𝜔𝜔𝑚𝑚 

Our next step is to derive the speed-torque characteristic of a shunt DC motor using these 

foundational equations. 

Now, let's examine the equation 𝑉𝑉 = 𝐸𝐸 + 𝐼𝐼𝑎𝑎 ⋅ 𝑅𝑅. We can rearrange this to express the back 

EMF E as: 

𝐸𝐸 = 𝑉𝑉 − 𝐼𝐼𝑎𝑎 ⋅ 𝑅𝑅 

What exactly is this back EMF? The back EMF is defined as: 



𝐸𝐸 = 𝑘𝑘 ⋅ 𝜙𝜙 ⋅ 𝜔𝜔𝑚𝑚 
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Therefore, we can write: 

𝑘𝑘 ⋅ 𝜙𝜙 ⋅ 𝜔𝜔𝑚𝑚 = 𝑉𝑉 − 𝐼𝐼𝑎𝑎 ⋅ 𝑅𝑅 

From this, we can isolate the speed of the motor ωm: 

𝜔𝜔𝑚𝑚 =
𝑉𝑉

𝑘𝑘 ⋅ 𝜙𝜙
−
𝐼𝐼𝑎𝑎 ⋅ 𝑅𝑅
𝑘𝑘 ⋅ 𝜙𝜙

 

Next, substituting Ia with the expression 𝐼𝐼𝑎𝑎 = 𝑑𝑑
𝑘𝑘⋅𝜙𝜙

, we derive the following equation: 

𝜔𝜔𝑚𝑚 =
𝑉𝑉

𝑘𝑘 ⋅ 𝜙𝜙
−

𝑘𝑘 ⋅ 𝑅𝑅
(𝑘𝑘 ⋅ 𝜙𝜙)2 

In this scenario, we have kept the field current constant, which means the flux φ remains 

unchanged. Thus, this equation represents the relationship for the speed of the motor: 

𝜔𝜔𝑚𝑚 =
𝑉𝑉

𝑘𝑘 ⋅ 𝜙𝜙
−

𝑘𝑘 ⋅ 𝑅𝑅
(𝑘𝑘 ⋅ 𝜙𝜙)2 

This equation describes a straight line when we plot ωm on the y-axis against torque T on the 

x-axis. Here, V is the applied voltage, and 𝑘𝑘 ⋅ 𝜑𝜑 is constant due to our assumption of constant 

flux. 



Since 𝑘𝑘 ⋅ 𝜑𝜑 remains constant, both T and ωm are treated as variables in our plot. Essentially, 

we are graphing speed versus torque. The first term in the equation represents the no-load speed 

𝜔𝜔𝑚𝑚0, while 𝑅𝑅
(𝑘𝑘⋅𝜙𝜙)2 indicates the slope of this characteristic curve.  

Thus, we obtain a straight-line graph where ωm0 denotes the no-load speed, and the slope of the 

characteristic is given by 𝑅𝑅
(𝑘𝑘⋅𝜙𝜙)2.  

This characteristic applies to both shunt DC motors and separately excited DC motors. Now, 

the next step is to discuss how we can control the speed of a shunt DC motor or a separately 

excited DC motor. 
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Now, let’s delve into the speed control of a shunt or separately excited DC motor. To illustrate 

this, we'll first draw the characteristic curve, with motor speed ωm plotted on the y-axis and 

torque T on the x-axis. The characteristic exhibits a straight-line relationship, resembling the 

following: 

𝜔𝜔𝑚𝑚 = 𝜔𝜔𝑚𝑚0 − 𝑘𝑘 ⋅ 𝑘𝑘 

Here, ωm0 represents the no-load speed, and we can express this relationship more precisely as: 

𝜔𝜔𝑚𝑚 =
𝑉𝑉

𝑘𝑘 ⋅ 𝜙𝜙
−

𝑅𝑅 ⋅ 𝑘𝑘
(𝑘𝑘 ⋅ 𝜙𝜙)2 



In this equation, k remains consistent throughout. Now, let's discuss the first method of speed 

control, which is the armature resistance method. By altering the armature resistance R, we 

essentially modify this parameter in our equation.  

When we change R, the slope of the characteristic line will be affected, but it’s important to 

note that the no-load speed ωm0 remains unchanged. The characteristic curve will transform 

accordingly, shifting positions as we adjust the armature resistance. 

As we increase the armature resistance, the characteristic will change in this manner: 

• For R1 

• For R2 

• For R3 

• For R4 

In this scenario, we observe that R1 < R2 < R3 < R4, meaning we are effectively increasing the 

armature resistance. Consequently, this adjustment leads to a variation in the torque-speed 

characteristic.  

Now, suppose we have a load torque Tl that remains nearly constant. This load torque can be 

represented on the same graph, which helps us understand the impact of changing armature 

resistance on the motor's performance under load conditions. 

The intersection of the motor and load characteristics determines the operating point of the 

system. Initially, we have one speed, represented as ωm1. As we change the armature resistance, 

the speed adjusts accordingly, leading us to a second speed, ωm2. If we continue to increase the 

resistance, the speed will shift again, resulting in ωm3 and then ωm4.  

Thus, with each increment of armature resistance, we see a corresponding change in speed. 

This is how speed control can be achieved through the armature resistance method. However, 

it’s important to note that this method is not particularly efficient. The introduction of armature 

resistance leads to I2R losses, which can impact overall performance.  

Now, let’s explore an alternative method of speed control: armature voltage control.  

In this approach, we manipulate the armature voltage. The torque-speed characteristic can be 

represented as ωm versus torque T for a specific voltage value. When we alter the voltage, the 



equation modifies to: 

𝜔𝜔𝑚𝑚 =
𝑉𝑉

𝑘𝑘 ⋅ 𝜙𝜙
−

𝑘𝑘 ⋅ 𝑅𝑅
(𝑘𝑘 ⋅ 𝜙𝜙)2 

Here, we are adjusting the armature voltage, which in turn affects the no-load speed of the 

motor. As we change the voltage, we can observe the resulting variations in the speed, 

enhancing our control over the motor's operation. 

When we adjust the voltage V, we observe that the no-load speed changes, while the slope of 

the characteristic remains constant. This slope is effectively a fixed quantity. As a result, when 

the no-load speed varies, we can plot a family of curves representing different voltage levels, 

such as V1, V2, V3, and V4. In this scenario, we see that V1 > V2 > V3 > V4.  

Now, if we consider the load characteristic, we can identify various speeds: ωm1, ωm2, ωm3, and 

ωm4. As we change the voltage, the corresponding speeds also change. This method of speed 

control is more efficient than the armature resistance control because it minimizes I2R losses; 

we are simply adjusting the voltage amplitude rather than adding resistance. 

To implement armature voltage control effectively, we require a variable voltage power supply. 

If we have a DC power supply that allows us to vary the voltage, we can utilize this method, 

which proves to be more efficient than controlling speed through armature resistance. 

That concludes today's lecture. We will continue our discussion in the next session. 


