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Speed Control of Separately Excited DC Motor Using Controlled Rectifiers 

Hello and welcome to this lecture on the fundamentals of electric drives. In the last session, we 

explored the characteristics of DC motors, with a particular focus on shunt motors and series 

motors. Today, we will delve into the topic of speed control for a separately excited DC motor 

powered by a controlled rectifier. Let’s now examine how we can effectively manage the motor's 

speed by utilizing controlled rectifiers. 
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Now, let's explore the different types of controlled rectifiers we have. Primarily, there are two 

types: the full-controlled rectifier and the half-controlled rectifier. Let's start by looking at the 

topology of these two rectifiers.  

For the full-controlled rectifier, we use a thyristor bridge, composed of silicon-controlled rectifiers 

(SCRs). This bridge feeds the armature of a DC motor, while the field winding is separately 



excited. The input to this bridge comes from an AC supply. 

Now, in this setup, the current flowing through the system is denoted by Ia, which represents the 

output current, and the output voltage across the bridge is denoted by Va. In this case, it’s important 

to note that the current can only flow in one direction because we are using controlled rectifiers 

(SCRs), which can only deliver current in a forward direction. This means current flows from the 

SCR to the load in one direction only, without any reverse current flow. However, the output 

voltage Va can be either positive or negative due to the AC input supply. 

The input voltage, denoted as Vs, is an AC waveform and can be mathematically expressed as: 

𝑉𝑉𝑠𝑠 = 𝑉𝑉𝑚𝑚 sin(𝜔𝜔𝑡𝑡) 

If we plot this input voltage, we get an alternating sinusoidal waveform. On the graph, the x-axis 

represents ω t, and the y-axis shows the voltage. At key points, such as π and 2π, we can observe 

the alternating nature of the supply voltage. 

Now, although the input voltage is alternating, the output of this full-controlled rectifier will have 

an average DC component. This average output voltage can be positive or negative, depending on 

the firing angle of the SCRs, which is what makes it a full-controlled rectifier. And since we are 

working with a single-phase input, we refer to this setup as a single-phase full-controlled rectifier. 

If we plot the average voltage and current on a plane, with voltage on the y-axis and current on the 

x-axis, this converter operates in two quadrants: the 1st and the 4th. The voltage can be both 

positive and negative, but the current can only be positive. Therefore, this is a two-quadrant 

converter, capable of operating in the 1st and 4th quadrants. 

Now, let's examine another type of controlled rectifier. In this configuration, we again have four 

devices, but unlike the full-controlled rectifier, only two of these devices are SCRs, while the other 

two are diodes. This circuit also feeds the armature of a separately excited DC motor, with the 

field winding being separately excited. The current through the armature is denoted as Ia, and we 

observe the average current and voltage at the output. The input supply here, as before, is an AC 

source. 



This type of rectifier is known as a half-controlled rectifier, and since we are working with a single-

phase AC input, it is referred to as a single-phase half-controlled rectifier. 

Now, let's consider the operating quadrants of this rectifier. Due to the presence of the two diodes 

in the circuit, these diodes provide a freewheeling path. This means that whenever the output 

voltage Va tends to go negative, these diodes become forward biased, effectively clamping the 

voltage and preventing it from becoming negative. As a result, the output voltage Va can never 

drop below zero, which is why this setup is called a half-controlled converter. 

In terms of operating quadrants, this converter can only operate in the 1st quadrant. To visualize 

this, if we plot the operation of the converter on a VI plane, with Va on the y-axis and Ia on the x-

axis, the operation is restricted solely to the 1st quadrant. This is because the voltage can never be 

negative, and naturally, the current also cannot be negative due to the unidirectional nature of the 

SCRs and diodes. 

Single-phase converters like these are typically used in lower power applications, specifically 

when the required power is less than 10 kilowatts. For higher power applications, where the power 

exceeds 10 kilowatts or more, we generally use three-phase converters to handle the increased load 

and efficiency requirements. 
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In the case of a three-phase converter, we can also have similar topologies as those seen in single-

phase systems. Here, we are dealing with three-phase converters, specifically the bridge converter 

topology. All the devices in this bridge are SCRs (Silicon Controlled Rectifiers), and this setup 

feeds the armature of a DC machine. The field winding, as usual, is separately excited, while the 

input to the converter is a three-phase AC supply. The output of this converter provides the 

armature current, denoted as Ia, and the average output voltage, denoted as Va. 

If we take a closer look at the input, it consists of a three-phase balanced voltage supply. The 

output voltage, Va, can either be positive or negative, depending on the operating conditions. Just 

as in the single-phase converter, the three-phase converter can also operate in both the 1st and 4th 

quadrants. When we examine the operating quadrants, with voltage on the y-axis and current on 

the x-axis, we observe that this converter operates as a two-quadrant converter, meaning it can 

function in both the 1st quadrant (positive voltage and positive current) and the 4th quadrant 

(negative voltage and positive current). 

Thus, this configuration is referred to as a three-phase full-controlled converter, and due to its 

bridge structure, it is commonly known as a bridge converter. 

Similarly, we can also implement a half-controlled three-phase converter. In this case, the 

converter consists of six devices, three of which are SCRs (controlled rectifiers), while the other 

three are diodes (uncontrolled rectifiers). The diodes act as the uncontrolled rectifiers. The input 

to this half-controlled converter is again a three-phase AC supply, and the output feeds the 

armature of a DC motor, with the field winding being separately excited. The armature current is 

represented by Ia, and the armature voltage is represented by Va. 

This half-controlled configuration is often used when full control over the output is not required 

or when cost efficiency is a priority, as fewer controlled devices (SCRs) are needed compared to 

the fully controlled bridge converter. If we examine the operation of this converter, it is clear that 

it only functions in a single quadrant. When we plot the voltage and current on the xy-plane, we 

can see that this converter is limited to operating in the 1st quadrant, and that is precisely why it is 

referred to as a half-controlled converter. The voltage cannot become negative because of the 

freewheeling path that exists between one diode and one SCR. 



Whenever the voltage attempts to become negative, the freewheeling action kicks in, forming a 

path through the diode and SCR. This freewheeling mechanism causes the voltage to drop down 

to zero, meaning that the output voltage, Va, can have a minimum value of zero but can never go 

below that. As a result, the voltage remains positive, and the converter operates strictly in the 1st 

quadrant, or quadrant 1, which is why this configuration is termed a three-phase half-controlled 

converter. Given its bridge topology, it is sometimes referred to as a three-phase half-controlled 

bridge converter. 

Now, let’s explore how we can analyze the performance of a separately excited DC motor when it 

is powered by a single-phase full-controlled converter. This analysis will help us understand the 

detailed operation of DC motors under such rectifier-fed conditions. 
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We are feeding a separately excited DC motor from a single-phase full-controlled converter. Let’s 

begin by drawing the circuit diagram to visualize the setup. We have a single-phase bridge with 

four SCRs, and to simplify the motor's representation, we replace it with its equivalent circuit. This 

equivalent circuit of the motor includes the armature, which consists of resistance, inductance, and 

a back EMF. 

This is the armature representation of the DC motor, and the input to the converter is an AC source 



with a voltage magnitude denoted as Vs. Now, Vs is the instantaneous value of the AC supply 

voltage, which can be expressed as: 

𝑉𝑉𝑠𝑠 = 𝑉𝑉𝑚𝑚 sin(𝜔𝜔𝑡𝑡) 

Here, we are working with a single-phase, full-controlled bridge converter. The output voltage of 

the converter can be controlled by adjusting the firing or triggering angle α of the SCRs. The 

current through the armature is denoted as Ia, and the voltage across the armature is Va. When we 

use lowercase letters like ia and va, we are referring to the instantaneous values of the current and 

voltage, respectively. 

This converter can operate in two distinct modes: continuous current operation and discontinuous 

current operation. We will explore both modes in separate parts of the lecture. 

Let’s first focus on the discontinuous current operation. In this mode, the armature current becomes 

discontinuous, meaning the current Ia drops down to zero at certain intervals. Now, to better 

understand this, let’s visualize the output voltage waveform. The input to the converter is a sine 

wave, so when we plot the waveform, we’ll see the typical sinusoidal pattern: starting at 0, reaching 

π, then continuing to 2π, 3π, and so on. 

We have a back EMF generated by the motor, and the SCR is triggered at an angle α, which occurs 

in every half cycle. This results in a rectified waveform. For example, in one half-cycle, we trigger 

the SCR at α, and the corresponding value for the next trigger point is π + α. When we trigger the 

SCR, the current rises from zero, initiating conduction. Now, let’s look at the behavior of the 

circuit, which is an RLE circuit, meaning it consists of resistance R, inductance L, and the motor's 

back EMF E. 

When the SCRs are triggered, let’s say SCRs T1 and T2 are triggered in the positive half cycle, 

since they are forward biased during this period. In contrast, T3 and T4 are triggered during the 

negative half cycle. At the instant α is reached, T1 and T2 are triggered, entering into conduction. 

This allows current to flow, starting from zero and rising. However, the current does not persist 

indefinitely, it decreases and eventually returns to zero before the next pair of SCRs are triggered. 

At π + α, we trigger the next pair of SCRs, T3 and T4, in the negative half cycle. Similarly, the 



current again starts from zero and decreases back to zero before the next half cycle begins. This 

periodic behavior continues as T1 and T2 are triggered again, maintaining a cyclical operation.  

The current waveform, denoted as Ia, reflects this periodic behavior. The current begins at zero, 

rises, and then returns to zero before repeating the process with each subsequent triggering of 

SCRs. The point where the current returns to zero is referred to as the extinction angle. 

This angle is referred to as β. Now, let's discuss the output voltage. The output voltage will indeed 

be a rectified voltage, but it will have a specific waveform. When we trigger the SCRs, the output 

voltage becomes identical to the input voltage. This happens because, once the SCRs are triggered, 

they enter conduction, effectively connecting the input directly to the output. Thus, the current 

flows through the SCRs and returns back to the source. 

For instance, when we trigger SCRs T1 and T2, the output voltage Va becomes equal to the source 

voltage Vs. This continues up to ω t = π, but the current continues to flow beyond ω t = π due to 

inductive effects, maintaining the continuity of the current. The current does not drop to zero until 

the angle β is reached. As a result, the output voltage Va remains the same as Vs until the current 

reaches zero at β. 

Once the current becomes zero at β, the circuit is effectively disconnected, the source is no longer 

linked to the load. At this point, the output voltage becomes equal to the back EMF of the motor, 

as there is no more current flowing through the circuit to maintain Vs. The voltage now follows 

the back EMF curve. 

Then, at π + α, SCRs T3 and T4 are triggered. The current is redirected through this new pair of 

SCRs, T3 and T4, causing the current to flow once more through the circuit. As a result, the voltage 

across the load reverses direction, reflecting the alternating nature of the input supply.  

This entire process is periodic, meaning the output voltage follows this pattern repeatedly, giving 

rise to a waveform where the voltage follows the source during conduction and the back EMF 

when the current ceases. The waveform of the output voltage will reflect this alternating behavior, 

maintaining a periodic structure due to the nature of the input AC supply and the switching of the 

SCRs. Thus, the output voltage will exhibit a pattern that repeats consistently over time. 



So, the output voltage Va consists of two distinct intervals: one is the powering interval, and the 

other is the zero current interval or coasting interval. Let's break this down.  

During the interval when α < ω t < β, the output voltage Va is identical to the input voltage Vs. 

This phase is known as the powering interval. In this period, the SCRs are conducting, and the 

circuit is actively delivering power, resulting in Va = Vs. 

Then, we have another interval where 𝛽𝛽 <  𝜔𝜔𝑡𝑡 <  𝜋𝜋 +  𝛼𝛼. In this small interval, the output voltage 

becomes equal to the motor's back EMF. This is referred to as the zero current interval or 

sometimes as the coasting interval. During this coasting phase, there is no current flowing, and the 

voltage across the armature Va is purely the back EMF of the motor, as the input source is 

disconnected. 

So essentially, we observe two different operating modes: the powering interval, where Va = Vs, 

and the coasting interval, where 𝑉𝑉𝑎𝑎 = back EMF. In the following analysis, we will examine both 

intervals separately, starting with the powering interval. 
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In the powering interval, which occurs when α < ω t < β, several important things happen. First, 

during this interval, the input voltage is identical to the output voltage, meaning that the output 

voltage Va is equal to the input voltage Vs.  



Now, let’s examine the armature voltage Va. The armature voltage consists of three key 

components: 

1. The voltage drop across the armature resistance Ra, 

2. The voltage drop across the inductance La due to the changing current 𝑑𝑑𝑖𝑖𝑎𝑎
𝑑𝑑𝑑𝑑

, and 

3. The motor's back EMF E. 

Thus, we can express the armature voltage as: 

𝑉𝑉𝑎𝑎 = 𝑅𝑅𝑎𝑎𝑖𝑖𝑎𝑎 + 𝐿𝐿𝑎𝑎
𝑑𝑑𝑖𝑖𝑎𝑎
𝑑𝑑𝑡𝑡

+ 𝐸𝐸 

Now, since the input voltage is sinusoidal, we can substitute for Vs as Vm sin(ω t), where Vm is the 

peak voltage. So, the equation becomes: 

𝑉𝑉𝑚𝑚 sin(𝜔𝜔𝑡𝑡) = 𝑅𝑅𝑎𝑎𝑖𝑖𝑎𝑎 + 𝐿𝐿𝑎𝑎
𝑑𝑑𝑖𝑖𝑎𝑎
𝑑𝑑𝑡𝑡

+ 𝐸𝐸 

This is a first-order linear differential equation, assuming that the back EMF E remains constant 

throughout the interval. 

To solve this differential equation, we get two components in the solution for ia (the armature 

current):  

1. The steady-state component, which exists when 𝑡𝑡 → ∞, 

2. The transient component, which decays over time. 

In the steady state, the inductive voltage becomes the inductive reactance multiplied by the current, 

reducing the circuit to an RLE (resistance-inductance-EMF) model. For the steady-state solution, 

we can write: 

𝑖𝑖𝑎𝑎,steady =
𝑉𝑉𝑚𝑚
𝑍𝑍

sin(𝜔𝜔𝑡𝑡 − 𝜃𝜃) −
𝐸𝐸
𝑅𝑅𝑎𝑎

 

where Z is the impedance and θ is the phase angle. This represents the steady-state current. 



In addition to the steady-state term, there is a transient component, which arises due to the RL 

nature of the circuit. The transient component has the form of an exponential decay: 

𝑖𝑖𝑎𝑎,transient = 𝐴𝐴𝑒𝑒−𝑑𝑑/𝜏𝜏 

where 𝜏𝜏 = 𝐿𝐿𝑎𝑎
𝑅𝑅𝑎𝑎

 is the time constant of the RL circuit. 

Thus, the total solution for the armature current ia during the powering interval consists of both the 

steady-state term and the transient term. The steady-state part describes the current as a function 

of the sinusoidal input, while the transient part captures the short-term effects of the RL circuit as 

it stabilizes. 

As time t approaches infinity, the transient component of the solution will diminish to zero. This 

leaves us with the steady-state part, which consists of two significant voltages. The first is Vm, the 

applied voltage, expressed as 𝑉𝑉𝑚𝑚 sin(𝜔𝜔𝑡𝑡), where Vm represents the peak voltage. Accompanying 

this is the angle θ, known as the power factor angle, calculated as 𝜃𝜃 = tan−1 �𝜔𝜔𝐿𝐿
𝑅𝑅
�. This angle 

reflects the relationship between the inductive reactance and resistance, indicating how the circuit's 

impedance affects the current. 

The second voltage present in the steady-state is E, which represents the back EMF or DC voltage 

in the circuit. Notably, E opposes the flow of current, contrasting with the input voltage Vs, which 

facilitates current flow. Therefore, when considering E in the context of Ohm's Law, it can be 

expressed as − 𝐸𝐸
𝑅𝑅𝑎𝑎

. 

In addition to these steady-state voltages, we also have the transient component given by 𝐴𝐴𝑒𝑒−
𝑡𝑡
𝜏𝜏, 

where τ denotes the time constant of the circuit, defined as 𝐿𝐿𝑎𝑎
𝑅𝑅𝑎𝑎

. This time constant, which can also 

be represented as τa, characterizes how quickly the circuit responds to changes in current. 

To summarize, the overall solution to the differential equation comprises both a steady-state 

component and a transient component. The transient component will gradually approach zero as t 

tends to infinity, leaving us with only the steady-state response. 

That concludes today's lecture. In our next session, we will focus on determining the constant A. 


