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So welcome, to yet another exciting topic which we would be covering today. And this is on

Neural Networks and very specifically aimed at medical image analysis. So while we have

dealt a lot of topics about how features are extracted and what they can be describing over

there and we had done our last class on using Random Forest and Decision Tree like learners

as well for doing classification segmentation problem. So yet again another exciting one is

can we use neural networks for doing the same thing as well? We will be starting with a very

primitive introduction to what neural networks are and from there we will be proceeding on

to how we are going to actually do it and there is a exciting demonstration as well using a

very small snippet code on Matlab as well. 

(Refer Slide Time: 1:10)

So this  talk  is  organized  where  I  am going to  speak  about  what  a  neuron model  is,  so

mathematically how you define a neuron as in its own (()) (1:13) and from there I would be

moving onto a say what is a neural network and what the neural network formulation looks

like and from there I would be proceeding onto a very standard learning algorithm which is

called as Red Backpropagation, which is as of now one of the most commonly used. So there

are different ways in which how this error is backpropogated and how things are optimized.

And then we have gradient checking and optimization, which is just optimization criteria as



to when to stop and what is the final conformal configuration of a neural network where it

will be giving you the best of classification or say regression problem.

(Refer Slide Time: 2:17)

So without much of delay, let us start with how we define a simple neuron model. So see that

you have a feature vector, which just has 3 dimensions, so I can represent a particular feature

sample over there as a vector x which can have 3 different scalar values X1, X2 and X3. So

these are basically 3 different components which make 3 different features. So now I take

these once and then I want to predict a particular variable which is called as p and note a fact

that I am putting a small hat on top of p because this is a predicted variable.

The true state of the variable will be the same value p without that particular hat and p stands

because I am using it as a predictor constant over here. So now let us have a very simple

model which would say that let us multiply each of these observation points over there with a

certain weight. So X1 is multiplied by a weight called as w1, X2 is multiplied by a weight

called as w2 and X3 is multiplied by a weight called as w3, ok. Now, we additionally take

another weight called as W not or the bias and so you can also define this bias as unity

multiplied by a weight W not, ok. In that case your W not to W1, 2, 3 they all formed on one

simple vector which is called as W. Now if, I have a summer over here then my output of this

summer would appear something like this which is y = W not + W1X1 + W2X2 + W3X3.

Now in terms of a matrix multiplication, I can just write it down as a scalar multiplication

between a weight matrix Ws, I also take b as a bias term over there and I take a transpose of

all of these access and unity. So this is going to give me a scalar, a dot product between them



is going to give me a scalar value. Now, I apply certain sort of a transformation on top of this

result in output over there, which is called as a nonlinear transformation and this will be

mapping my output of this summer onto my predictor which is p hat. Now this nonlinear

function can be of this particular form which is 1 by 1 + e to the power of - y, where y is the

input given down to this nonlinear function.

And this has a very famous name this is called as the sigmoid non-linearity function. Now if

you look here very carefully, so if the value of y is tending towards 0, so you would have

basically e to the power of 0 which makes it 1 so the value at y = 0 for this function is 0.5.

Now, if the value of y is a quantity which is very much negative so say - 1000, ok. now you

get 1 by 1 + e to the power of - of - 1000, which makes it 1 by 1 + e to the power of 1000,

which is a very large number compared to 1 and of, so in that case this nonlinearity fNL

would actually tend towards e to the power of - 1000, where it goes and that is a very low

number very close to 0 actually.

On the other way, if you see the upper bound of it, when y tends to a very large positive

number then you will be having this whole thing e to the power of - y, where y is a large

number tending actually towards the 0 and then this whole function over here will be of a

form of 1. So you see that for negative values of y you have a saturation at  0, for very

positive values of y you again saturate at 1, so even if your y becomes unbounded in some

form this nonlinearity imposes that your final predictor is always bounded in the range of 0 to

1. Similarly there is another famous function which is called as tan hyperbolic and this also

has a similar bound (()) (5:49) for it, it is not bounded in the range of 0 to 1, but it is bounded

in the range of - 1 to + 1. So these are certain kind of nonlinear functions which we use so

that our responses always remain bounded.
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Now from there let us look into how we can formulate a whole network using these kind of

neuron models.  So as of now what  we were doing is  we take down multiple such input

parameters over there, we are able to predict only one of those output values. But my constant

may be that I  want to predict  multiple of those output values and that is  where a neural

network will form down that I have a network being created.

So in that case so we take the same simple example that let there be just three different

parameters over there and let there be one single neuron, which is mapping it to one predictor

value p1. Now note, I have taken these weights no more as just W1, W2, W3 they are now

written as W1, 1, W1, 2, W1, 3 and this basically stands the first element is the target where it

is being mapped, the second element of the subscript is the source from where it is being

mapped and this is a very standard convention how it goes. Then that is by the same reason

that your output over here is also termed as y1, ok.



(Refer Slide Time: 7:22)

Now in a similar way I can map it down to the second node as well and once I map it down to

the second node I will be able to get down my response from the second node as well and this

will be the form in which it would appear. Now let us say that I have j number of such input

nodes and I would like to map it to k number of such output nodes. And in that case very

typically, weight relation between the Jth input node to the kth output node will be mapped as

W of k, j and you would a similar kind of nonlinearity and this is the basic form in which it

appears.

(Refer Slide Time: 7:59)

Now, if we look at the total network at any point of time, this is how the picture of the whole

network is going to look like. Now over there for my first input over here for my first set of



inputs  and my first  element  on  this  output  over  here,  I  will  be  able  to  find  out  certain

difference which is called as the error, which is I am predicting the value of p1 as p1 hat and

my actual value should have been p1. So there would be a difference between them, say this

is 1 and this comes down somewhere around 0.8, so you have a difference of 0.2 or similar

kind of cases might appear.

If this is also 1, this is also 1 you get an error of 0, that means you have done perfect mapping

over there. So this function over here we just take down accumulation of these errors which

come down. Now similarly, for the second node also you will be getting a similar quantity

however, the question is you are going to get all of these errors for each of them, is there

some way in which we can say about the cumulative error being predicted in this  whole

network. Now in that, what you can do is assuming that this is also a vector and you can

actually compute the Euclidean distance between these two vectors. So you have a set of

those actual state variables and you have a set of those predictions which you are getting

down from this  network.  Take down the  Euclidean distance  that  is  going to  be a  scalar

quantity, which will be a cumulative error of this network while it is predicting it out.

Now keep this in mind, this is a very important step because this is what we are going to

subsequently use in the next stages as well. So this commodity over here is called as the mean

squared error, which I am going to take down, ok. So if I am going to so I will come down to

how we are getting the mean quantity over there, but this is as of now just a square root of the

error which we are getting.

So the next term which we call is known as “Error Backpropogation”. Now what this does is

pretty simple, say you have a network you put down you had put down certain values of those

weights over there. Now you would actually want that this neural network performs in a way

such that my error e, which I was computing in the last step, should be minimum that is my

final goal and objective which I need to achieve.

However, the point is that how do I select what are the values of those weights such that this

network will give me the minimum error and that is a question in hand. Now, we solve it

using this method called as error backpropogation in which what we do is we just compute

what is the final error coming down with a particular combination of these weights and then

we will like to backpropogate it, or push it back into the network and then keep on refining

the values of these Ws such that I will come down at a place, when after some point of time



after refining it  for a few number of iterations I should be at  a position to get down my

maximum performance over there or minimum error.

(Refer Slide Time: 11:02)

Now for that what I can do is I will not just be having one single observation of Xs, but I will

be having a series of such observations. So say in a simple example I have a set of images on

which I can say whether they are some sought of diagnostically abnormal or diagnostically

normal. So we will be later on the class, when we do the coding exercises, we would be

taking a very simple example in which we are going to take down my cross copic images of

white blood cells and we would be predicting whether each of this WBC images over there

are cancerous of a particular kind, which is acutely probabilistic leukemia or they are not at

all leukemic in any way and they are perfectly normal.

So this is what we are going to do, so we will be just given images, so corresponding to each

image I can extract a set of features, so that will be for my first my image my set of features

will be X1. So that image will have a state variable which is either it is normal or abnormal 0

or 1 and network would be predicting a certain value. For the second image I will be having

my features, I will be having the state variable over there.

Now make a note over there that I have generically used a vector notation for p, but these can

be scalars as well. So I can put them as class labels of 0 and 1, or I can keep them as a binary

tuple class in which it will be the first one is the true or false for the first class and the second

element over there is a true and false of the second class. So if it is class 1, this will be



appearing in a form as 10, if it is class 2 it will be appearing in a form of 01, so that can also

be a way in which this can be represented, similarly I have for all the n number of images.

Now what I do is, I write cleverly something called as the cost function, which is j of omega

and this is where this submission over this error comes in play. So what I do is typically for a

set of weights, I will be pushing all  of these training samples over there and I would be

finding out what is my difference of error computed for each of the sample, then I take a sum

of all of those errors because that is going to represent my cumulative error in performance of

the network over all the samples over which I have as of now pushed forward through the

network.

Now from there my objective is, somehow I should be able to minimize this cost function

which is the error, because if I am able to get minimum error across all the samples I am

using for training,  I  would be able  to get  the network which has maximum performance

accuracy  over  there.  Now  for  that  we  write  down  formally  our  whole  objective  as  the

argument of W in which I get a minimum condition for my cost function coming up over

there.

Now in order to achieve that what we do is called as gradient descent learning and this whole

learning paradigm is defined something like this. We have another variable called as an epoch

or k over here, so what we do is for a certain epoch whatever is my weights I am going to

subtract the derivative of the change of this cost with respect to the weights over there.

Now remember one thing that j of w is a function of pn and pn hat, now pn is a constant but

pn hat is actually a function of all of these Xs, because your predictor was over there. Now,

when you have a function of all of these Xs and Ws over there, so this function is actually

dependent on both x and w. So I can take a derivate of this whole thing with respect to w, so

this  becomes  a  finitely  solvable  problem  given  the  point  that  each  function,  which  is

functionally constituting simple elements over this variable should also be having a finite

derivative only in that case.

And as you see the all the earlier equations, which we have used they are submission and

there is a certain amount of nonlinearity which is continuous and differentiable throughout

the range. Now that is why this comes down as a differentiable quantity and you can always

keep on solving. Now the question is now that I get it, how do I actually train my network

which is objective which we are trying to achieve over here during the process of training?
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So what we do is, we take the same equation over here, now we would start with some sort of

an  initial  guess  of  this  Wk,  say  that  is  a  random guess  at  which  I  land  down with  the

configuration called as W1, and at this W1 I would be getting a certain error which is over

here. Now based on this error and solving out these derivate, I can update the value of Wk,

now having updated the value of Wk there is a chance that I would land up somewhere here

and this will be my error position, based on that I am again going to update it, so at each

iteration I am going to compute my cumulative error over all the samples I am using for

training.

And this way I keep on repeating till I land down at a position k, which is the final point

where I can actually stop and beyond this the error is not going to minimize any further. Now

this scale over here of change of case is called as epochs and this comes down from the fact

that within each epoch or within a small age of time I am going to have all the possible

changes being taken care off over of there, so I use all the samples which are present over

there in order to compute my errors and update my network and then I keep on repeating

across epochs.
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Now let us look at a fun part over here which is how this gradient decent would actually

work.  Now we were  looking into  this  graph over  here  which  is  about  the  cost  function

varying with the number of epochs, but we were never trying to look into what these weights

what was happening to the space of these weights because that is where the fun is located

actually.

Now what happens over there is we will be starting with some random guess, we have just

two plots over here and we are going too looked a simultaneously into two both the plots.

Now, at the first epoch I have this first initial guess, where I start now that is a pure random

guess. Now based on that I am going to update, so I actually got increase in my cost function

and here I am going to change my position appropriately because my Ws are also going to

change so it is a different combination of Ws.

Now from there I moved down to another position from there I keep on moving till the kth

position, when I get down somewhere over here. And this it now what would happen is if you

are going to change or across all of these values of Ws say you are empirically instead of

training the whole network what you do now is you take a network and then you possible

point out all the possible values of Ws and then you can actually get a surface plot over there.

So say W1 is varying in the range of - 500 to + 500 and Wt is again varying in the range of -

500 to + 500. So I just changed these values in discrete steps over there and then I would be

getting a 2D matrix which this height of this whole thing will be giving me this surface over

this cost function over there.



Now what typically happens is that as you are going to look at a point over there and then

you find  out  the  gradient,  this  gradient  was  actually  del  W of  J(W),  so  that  is  the  first

derivative of this cost function with respect to the weights itself. So it is going to follow the

slope along this weight surface and come down to the point wherever this cost is minimum.

So that is where this concept of gradient descent comes from, it does not comes from the

concept that this graph is a epoch versus cost graph but this is a gradient it is going to descent

along the gradient inside this surface plot of the cost function itself. So on the plot, on the

particular function of the cost function versus the weight is going to follow the gradient along

that and come down to a position where this error is going to be minimum and that is what

this whole training is all about.

(Refer Slide Time: 19:13)

Now with that we are finishing off with the theory and as a take home message what I would

do is I have a pointer you can have a look into this book called as Neural Networks and

Learning Machines by Simon Haykin, which is a very famous book on Neural Networks, so

please have a look through it for understanding theory in much more details. And if  you

would like to play your hands around then I have a list of these toolboxes. In Matlab, we have

the stuff called as Neural Network Toolbox the simple,nd is “nprtool”, it is a GUI based and

we will be doing a second subsequent experiment on this one itself.

On  Python  you  can  use  the  toolbox  called  as  Theano  and  there  is  another  scientific

programming language called as Lua on which a particular library for mathematical intensive

programming is Torch and within that you can use certain modules called as nn, cuDNN and

nngraph which we will be looking in fact in the subsequent lecture on Deep Neural Networks



as well as how to play around with them in solving a similar kind of problem, so with that we

would  be  proceeding  next  to  the  demonstration  on  how to  use  these  once  for  a  library

practical problem yeah.

(Refer Slide Time: 20:22)

So this is about the experiment we will be doing today, so I would be using the ALL-IDB

dataset for this thing. So as I was telling you this particular dataset is about leukemic images

and this  is  a particular  condition of cancers within the blood in which your lymphoblast

which  are  a  type  of  white  blood  corpuscles,  they  actually  get  cancerous  and this  whole

challenge is about being able to classify each WBC image into whether they belong to the

ALL class or they do not belong.

(Refer Slide Time: 21:02)



So you can get your dataset by signing into the terms and conditions of use over here and

download the same thing. So for my purpose I actually have the whole dataset downloaded

with me and this is how these images look like over here. So typically you will be having

each of these images which are sort of WBC and what they do is they have actually marked

each of them with a file name which has an underscore 1, or underscore 0s. So these 0s are

the once which are perfectly normal and the 1 which wherever you have a underscore 1

written they are the once which are leukemic in nature and the problem is very simple, you

have this image patches and from these images patches you just have to classify whether this

one belongs to an abnormal class or a normal class.

(Refer Slide Time: 21:48)

Let us look into our Matlab code which does that, so I have a neat script over here, thanks to

one of the TS who helped me prepare this one. So what we do is typically I am just doing a

bit of book keeping over here which is I get down to the path where my data is kept and then

I am reading down all the images, which are present over there using this directory function

and then just looking into how many images did I read over there. Now from there what we

do is typically that I try to create down two different vectors over here, one is this feature

vector  which  is  all  my Xs and the  other  one  is  my labels  matrix  over  there.  Now, you

remember that in my feature vector what I have is basically 1028 such columns and N of such

rows, so for each of them I will be having 1028 different features which are being extracted.
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Now, on labels I did tell you that it can be a 01 classification problem first class second class

and how I can write down is a some sought of a tuple. So I can have for the first class I can

have a 10 combination, for the second class I can have a 01 combination. And that is the way

in which we are going to use the labels over here as well. So what I do is I read down one of

these images and then after I have been able to read convert them onto a grey scale image and

from there I find out certain co-occurrence matrix properties. So we will be computing a grey

scale co-occurrence matrix of these features and then from there we will be finding out what

is the contract of that co-occurrence matrix the co-relation energy homogeneity and these

kind of factors coming up. 

(Refer Slide Time: 23:29)



Now once that is done what I do is that you can actually now resize this whole image itself

into a patch of 32 cross 32 and once that whole thing is done, now what you will be doing is

you also along with this  co-occurrence matrices,  you push down that  whole thing whole

image itself as features over there. So each pixel of the image is also a feature as of now.

Now, later on in the class we will again understand in a bit of more advance lectures we will

get into fact like how this also helps over here. Initially it might appear a bit confusing from

the fact that we were already extracting features and then why do I pushed down the whole

thing, but there is a beauty which happens with that.

Now what we do after that is so this particular book keeping over there is just to find out the

class labels because you do not have a separate file which says which image belongs to which

class but it was the file name where the whole encoding was done. So this is just to find out

which belongs to the first class and which belongs to the second class. Now from there once

this is done we have already prepared our data.

(Refer Slide Time: 24:32)

Now the next part is over here what we do is, we randomly shuffle out the data and the reason

for doing all of these shuffling is that we do not want to typically have a certain kind of

ordering.  So if  you look at  those images,  the first  few images were all  belonging to the

abnormal class and the last few images were all belonging to normal class. So now if I am

somehow if I look at the whole gradient descent problem over there, so first I will be training

it being very much bias towards the positive class, after that very much bias to the negative

class which is normal, I do not want this kind of a bias creeping into my system and that is

why we just we juggling around with the order in which they come.
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So there will be may be the first one or two of them from are positive class, the next three are

from negative class, the next one is again positive, next one negative, so in any random order

in which it comes, which will smooth down the way in which errors are computed and how

the weights are trained over there. Now, once I have actually made all of this into one single

linear array after this random permutation, now what I can do is this is one place where we

were  just  trying  to  save  it,  you may choose  to  save  the  feature  vectors  as  well  for  use

sometime later on because every time you do a “randperm” it is going to randomly permuted

in a different way. So you might like to preserve the way in which you are ordering was there.

Now, what we do is here is where we start defining the network and it is a very simple,nd

actually in Matlab, where you can define this as a pattern classification network we just has

100 neurons in one single hidden layer.

So, if I just want to change I can just make a, 10 so that would make down two different

layers in which the first one has 100 neurons, the second one has 10 neurons over there. And

by default this whole thing over here is where it is going to use just sigmoidal activation

functions. You can again play around with them by just going into net dot activation function

= and change all of these properties, you can just look into the documentation on much more

details.
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And then I start with the training in which what I do is I feed the network which is randomly

initialized, I feed all the features which it has to use for it and I feed all the labels where it

will be using in order to find out. So let us do a very simple run over this, since this is divided

into modular cell so what I would be doing is I would first evaluate the first section which is

about finding out the features. So now that we have all of the features coming down over here

in this feeds and I also have my labels coming down over here in this label matrix, ok.

(Refer Slide Time: 27:29)

So I basically have 260 such samples over which this whole thing has been computed. Now

with that I start with defining a network and let us train the whole network. So you see how

fast this whole training has happened down, so this is where this whole network was created



and you have a very graphical output about it, so we took down 1028 dimensional input and

then we fed it down to 100 hidden layers and from there it was mapped down to an output

which was just two vector output. And you can easily see that within this was set down for

1000 iterations over there in just 22 iterations or 22 epochs it has actually come down to the

minimum point where it is supposed to saturate, ok. Now, let us look into that epoch versus

performance graph and the training over here was based on other energy function which is

called as cross entropy. 

(Refer Slide Time: 28:10)

And you basically have 3 different graphs over here now what this graphs do is basically this

blue one is called as the training graph so we were dividing it into 3 different batches of

samples again and in that few of these samples were used for finding out the error over there

for  backpropogation.  Based  on  backpropogating  and  updating  the  whole  thing,  we  used

another set which is called as a validation set on which we were finding out where should we

stop down at a particular point of time. And there is another set which is called as a test set,

which is basically used for testing over there when we do not use that error from the testing in

order to do any updates or any changes onto the system. So this is one of them, you can

actually click on each of them and have a different look. So you can open up the receiver

updating characteristics and that could typically be showing you further three different sets.



(Refer Slide Time: 29:02)

So for the training one what is the ROC, for validation what is the ROC and for test what is

the ROC and you would also be getting a 2 + problem over here and for that reason you have

2 different ROC matrix also coming down. Now from there we can also be looking at the

confusion  matrix  which makes  you very clear  about  how many false  positives  and false

negatives, true positives and true negatives you are going to encounter and what is the total

performance of the system as such. 

(Refer Slide Time: 29:25)

Now if you look over here, the total number of errors which is on the cross diagonal elements

which are the false positives and the false negatives, you actually have a much lower quantity

over there just 5 percent and 6 percent and 4.5, 6 percent of it. Majority of it which is about



95.4  percent  is  actually  a  true  classification;  about  90.5  percent  is  actually  very  true

classification which happens. So you can see that very simple neural network we could be

training it down just with 100 neurons on one single go and you have a 90 percent accuracy

on classifying these patches of WBCs into either ALL or they are not, so with that we come

to a conclusion about Neural Networks and that is all, thank you.


