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Welcome to today’s topic and we have yet another interesting one on the application areas

and this is on Characterization of Tissues in Ultrasound. And I would be specifically speaking

about intravascular ultrasound and the whole nature about characterizing soft tissues within

intravascular ultrasound. So let us get down to how it is organized, so I will be starting down

with  an  introduction  and then  following down onto  brief  overview and backdrop of  the

ultrasonic imaging within intravascular ultrasound specifically. Since we have already studied

ultrasonic imaging and how it is done, so you all are pretty much well aware of the physics of

the instrumentation of imaging as well as some properties of how ultrasounds behave within

biological soft tissues as well.

So we take up from there and then go into the signal analytics model and understands how

signals  behave  and  what  are  the  amplitude  behaviors,  what  are  the  distribution  density

functions for them and eventually from there we will end up getting into one of the major

challenges  with soft  tissue imaging which is  called as  limit  resolution challenge and the

reason why limited resolution comes over here, as to it is not just increasing the number of

transducers which would transduce elements which would help you get rid of the problem of

limited resolution but why it will not lead to that one.



From there I would enter into something called as the statistical mechanics or the statistical

physics of ultrasonic imaging, which will explain over the different stochastic models which

describes how ultrasound signals can be interpreted which come down from different tissues

and whether there are any tissues specificities available for these different kind of ultrasound

amplitude values which you get down and reflect it from the tissue.

So using all  of this we have a solution which I would be discussing about how you can

leverage these kinds of never techniques in order to do tissue characterization. So with that I

would move over to some experiments and results of what we have achieved in the recent

past and then obviously again I would be drawing onto domain adaptation for In vivo use of

all of these methods because whatever we had done on experiments till then was based on

cadaveric data or in vitro acquired data. And from the last discussions which we had over the

course of time and from the previous lectures you are pretty much well aware of that the

actual final goal for medical image analysis is to make it useful for in vivo data and until you

are making it working on in vivo data, your solutions are not coming into practical use.
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So let us start with a very basic introduction of what I meant by tissue characterization and

what this whole idea is about. So basically if you look at the human body then you have a lots

of organs and they are made out of different kinds of tissues and one of this kind of tissues is

called as soft tissues, character is pretty much simple, so hard tissues are the ones like bones,

your tooth, so these are the ones where which are really mechanically hard and soft tissues

are like your skin, muscles adipose tissues. 



So this is one which is mechanically quite soft and they just offer some sort of a protective

coating on your body act as a shock observing buffer or is like skin is a thermoregulator

which your body has. We are looking specifically at these soft tissues and since we are pretty

much aware by now looking into the concepts of ultrasonic imaging that it is one of the best

use is to do it for imaging of soft tissues and trying to find out soft tissue abnormalities and

contrast  between  them  rather  than  use  it  for  hard  tissue  imaging  where  much  more

predominant use would actually be of computer tomography and X-ray modality based.

The other modality which is  obviously use for soft  tissue imaging is  definitely magnetic

resonance imaging, but we as taking down only to ultrasound as of now for its flexibility

purpose. Now, if we go down together so what happens is with this soft tissue condition,

sometimes in these soft tissues there would be some sort of an abnormality which in general

is what we define as pathologies.
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And  some of  them are  really  critical  and  so  one  of  those  critical  ones  is  say  a  plaque

formation within your blood vascular system, which is about so what happens in this case is

that you have your blood vessels which sort of a pipe and then within that you will have

cholesterol depositions, this is basically a physiological disease condition in which you have

cholesterol which is just depositing on the walls over here. Now as imagine this one that there

is a pipe and then there is some deposition going down over there, so eventually this pipe

bore is going to get clogged and once that happens, then blood cannot flow down through the

artery, so this kind of a condition is what is called as Atherosclerosis or even is called as



hardening of the artery. Now this is one of the problems which will happen down in case of

soft tissues.
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Now from there another problem is that in case of women with Breast there can be Lesions,

which are not necessarily always Cancerous, but they are just Tumors or some sort of an

abnormality over there, so these are again another kind of soft tissue abnormality which is

quite predominant in the word.

(Refer Slide Time: 5:44)

The other one is about retina, so since we have already done about our class on retinal image

analysis so you are pretty much well aware of what that means, but these also are objects or



organs where you have lot of problems with soft tissues and you need to have some modality

of handling soft tissue abnormalities very carefully.
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And the other one is definitely skin, one of the major areas and the major abnormality is

actually wounds, so you can get bruises, cuts, or there can be burns and all of these lead to

some sort of abnormality on the skin as well. Now, the traditional practice for understanding

any  sort  of  a  soft  tissue  abnormality  is  to  actually  do  a  some  sort  of  a  Biopsy  based

investigation,  so  what  is  also  called  as  a  histological  investigation.  This  is  basically  at

invasive way in which what you do is you surgically or some way you remove a part of the

tissue from your body. So there is a small cut made and the tissue is removed outside and

then it is processed and then put on a glass light and put under a microscope for microscopic

detailed observation.

Now the challenge which comes out of all of this is that it is a very invasive procedure and

you cannot always do these kind of invasive procedures in living human beings on their

vessel because this would mean that you have to in order investigate whether there is an

abnormality on a vessel you are basically going to cut down a small part of the vessel and

pull it out. Now that is not feasible practically, so you cannot do a histological investigation

on vessels.
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Similarly for Breast although it is done, Breast biopsy is quite common but it is a very painful

process as such. And if we can find out some way of getting rid of it that would obviously

much more appreciable. You can definitely not do it on the retina because the movement you

try to probe the retina by this invasive method you are going to damage the retina. In any

ways I mean either way either in order to investigate whether you have a perfect disease or

not, you are going to damage the retina, anyways if you are not even investigating it would

naturally damage after a few years, so it is not technically feasible to do it.

And similarly for wounds, I mean if we would generally like to investigate clinically as to

whether the wound is healing and that would mean that there are multiple layers of skin and

whether each of these layers of skin are growing out in a perfect way. But the problem is the

movement you want to do that so say this is the skin and I want to look into these layers I am

going to chunk out a part of tissue over there. So that means that in order to understand

whether a wound is healing, I am going to inflict another wound over there and pull out the

tissue and do it. So these are the major technical challenges why you can sometimes not use

Biopsy within a clinical environment setting. And this whole tissue characterization thing is

what comes into play for investigating a histological equivalent in condition when you cannot

do a Biopsy.
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So if you want to look into a blood vascular system, so a basic details of it is generally when

there whenever there is a plaque formation or Atherosclerosis, this is going on this is what

would  happen  over  there  and  they  lead  to  something  which  is  called  as  Cardiovascular

disease and there are lot of techniques for in vivo imaging of these ones. So there is CT

Angiography, MR Angiography which are basically for localization and one of these detail

investigation methods is was called as Intravascular Ultrasound.

So what is typically done is that ultrasound probe is put within over here which rotate 360

degree totally and then it produces this sort of a polar scanned out image and then on this

image  you  can  look  down for  cross  sections,  but  then  for  an  untrained  eye  this  would

basically appear as just a black or some white spots over there and not of much major sense.

So the whole of intravascular ultrasound tissue characterization is what deals with instead of

showing  this  kind  of  an  image,  can  we  show  something  which  is  almost  like  this  or

equivalent to a histological image so that is a basic problems treatment which we do. Now

this is very useful because we would like to assess Plaque Vulnerability in terms of very

preciously identifying whether there is a calcification versus there is some sort of fibrosis

over there.
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And the other one is we would like to investigate a Lipid pool versus Necrosis burden and

what is the condition of the Necrosis. So these are the major clinical indicators which need to

be  investigated  from  intravascular  ultrasound  as  well  for  when  investigating  out  these

vascular structures. Now, there have been quite a lot of contributions in the past and some of

them include papers to commercial products as well and one of them is called as a Spectral

analysis method. So what it does is whatever received ultrasound signal is there so say you

have a 20 megahertz probe, which is imaging your artery so you set down a 20 megahertz

signal and then whatever you are receiving, you use a white band receiver for receiving it.

So  obviously  you are  getting  your  fundamental  frequency at  20  megahertz,  but  when it

interacts with tissues and due to motion and all of this, so there would be a spectral spread,

right over there. So now we also try to although the emitted one was a very narrow mind 20

megahertz precise emission but the received one is a white band, so it is centered almost at 20

megahertz but then the bandwidth is much higher. So those kinds of analysis is what is called

as Spectral analysis, so that was started somewhere in 1983s by Lizzi and it continued going

on  and  we  have  two  commercially  available  products  called  as  Virtual  Histology  from

Volcano and iMap from Boston Scientific which make use of this kind of methods in order to

characterize tissues.

Now, from that a bit later on in time, so somewhere around 2010, so we had these methods

which were making use of texture analysis in ultrasound signals and images in order to find

out what kind of tissues they belong to and there was a quite amount of good success coming



down. But the major thing is that these all of these methods are still limited because they do

not identify what is a heterogeneous tissue composition. 

So what that means typically is that our body you never have a pure tissue which means that

if I say that there is fatty tissue over there, so there would be some fibrositis as well, there

would be some epithelial cells over there as well, so it is never a pure fatty tissue which is

over  there.  So you need to somehow identify what is  the coexistence or the relative co-

occurrence of these mixed heterogeneous tissues and that none of them is possible with all of

this prior methods which we have. 

The next one is that all of these methods failed to discriminate between dense fibrous tissue

and calcification, because both of them exhibit a very steady speckle behavior as you see over

there, so just none of them have been able to do that in the past. And then all of these too

definitely fail to discriminate between a true necrosis from shadows and what that means is

that over here you would see that whenever there is a calcification, so since that is a sharp

reflection happening over there so most of the acoustic signal is just reflected form this part

and then beyond it since you do not have any signal which is penetrating neither is able to

come back,  so you would see a  perfect  shadow coming down, so that  is  a perfect  black

region.

A similar kind of region is also exhibited by a Necrotic pool somewhere over here. And what

that means is over there the content is so homogeneous that there are no scattering particles

present over there and since nothing can be scattered out so you do not get a speckle intensity

coming down over there. Now how do you discriminate between a shadow and a true necrotic

region, this is another challenge which has not been solved any of them, because visually

they look pretty much similar to each other. So with these challenges is what I would be

discussing one of the basically a series of papers, but a major contribution from one of the

papers.
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So the  backdrop starts  something like  this  that  as  I  was  explaining  you the  histological

prospective. So what I would try to do is if I want to investigate a plaque within an artery in a

actual histological sense, then I would have to plaque out this artery and then do some sort of

a  block  preparation  over  there,  so  take  out  that  piece  of  artery  then  do  a  biochemical

processing to dry it and fix it so that hardens and then you put it inside a block of vax to

harden it even more. And then you do thin slicing of it, say consider slicing of bread over

here it will be slicing of tissue and we use a machine called as microtome to do that and then

you mount them onto a glass slide and then stain them and after that you would be looking

into microscope and then you see something of this kind over there.

Now in terms if you look in the engineering prospective of a transfer function, then what

comes out is that on this microscope we are going to eliminate with white light as we have

learnt in a microscopic lectures. So you illuminate this mass of tissue over here which is

mounted  on the  slide  with  white  light  and  then  what  you  get  down on  the  response  is

something like this, so for each pixel is some sort of a transfer curve over there, now based on

the intensity whether you are looking at blue and what is the intensity of red, you will be able

to tell  what is the relative density of these two kinds of tissues over there,  whether it  is

calcified or fibrotic and this is typically for a H&E stained tissue which we are looking at.
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Now in sense what it translates down to is that there is some sort of a probing energy which

goes through it  and there is  some sort  of a physiological property which is  say f  of that

particular object over there. Now, what we want to do in tissue characterization is we want to

find out what is this f inverse over here, which would give me as to what is the relative

distribution of the tissues by looking into the total histological image over there.
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Now if we take this one and then translate it directly onto our ultrasound space what that ends

up giving is, say I have this scanning ultrasound probe over here which circularly rotates and

then it ends a pulse, it receives back the same pulse over there. So I have a series of signals

coming down and now on that stack of signals I need to do some sort of a mathematical



model, which is going to end up giving me this sort of a model which will just be giving me

relative density of these different tissues in different colors.

So over here my forward function will be this Acoustic energy and this tissue backscatterer

density over there. Now, I need to find out some way of inverting this whole function such

that on this inversion I am able to get this sort of a map coming down. So this is in a sense

what tissue characterization is mathematically defined as and that is what we try to solve.
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But the problem is that it is not so easy to do it, thus you will never get down pure tissues and

the reason is within this limited resolution challenge. So what would happen is, say I have a

ultrasound transducer and it is emitting a pulse, now as it emits and it strikes down this mass

of tissues over there, so you would be getting this multiple scatters, now the whole concept of

scatters is that it is generally on theory that the cytoplasm to nuclear boundary, so the nucleus

within your cells they are the ones which are quite hard and strong and very dense and they

reflect back the ultrasound waves.

Now if the tissue these all these nuclei are quite densely packed very close to each other, then

all  of them are going to  emit  down and what you get  down at the transducer is  not  the

response of one of these cells, but it is a combine response of all the cells present over here.

And as such when you are getting down this once, so what will happen is that your resolution

is limited to this group of cells and no more to a single cell, so even if I am increasing the

number of transducer that is not going to play any significant role over there, because even by

increasing the number of transducer I am still going to get for each transducer just there will



be a group of cells which will be sending it back. And until I do some much more signal

analytics on top of it, I will never be able to identify directly I will never be able to identify

each single cell.

And for that reason that the minimum homogeneous structure within your body which has to

be identified is actually one cell. So a cell can be of one particular tissue type, but otherwise

that within a small volume there can be mix group of cells coming down. And what the best

what you can identify always through some sort of a analytics is what is the relative density

of each of them.

(Refer Slide Time: 17:26)

Now for that what we try to do is something like this, say that for each of them R1, R2 and

R3, you have some signal coming down over there.  Now at the end what happens is an

estimation framework, so it just a consolidated effort which is sent back over here and your

final objective is to do some sort of an inversion of this forward pass function. Now you have

to invert it given that your forward pass is not from each individual cell, but is from ensemble

and still you have to end up getting that one.
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And through that one you will be able to get some sort of a estimation although initially it

will be improper but eventually it would become proper. Now, in order to solve this sort of a

say intractable problem we enter into a interesting fact over here. Now this interesting fact is

that we make use of statistical  physics of acoustic imaging. Now for that what we do is

something like this,  say that I have different tissues which are different kinds of cellular

densities over there.

Now one thing which was observed is that as you pass a pulse of ultrasound and then it gets

reflected back, so whatever signal you are getting down you can actually plot down that as a

probability function so you keep on say for this example, it will be something like thousand

times you keep on sending a pulse over there and for each pulse you keep on recording what

is the intensity you have received. So it is the same transducers, same tissue region and you

are sending number of multiple pulses.

And then you just plot down a histogram or a after that you can find out a probability density

of each of these amplitudes. So the amplitude of this pulse is along this X axis which is called

as r and then on the Y axis is the probability of getting that value of r. Now, as you keep on

doing that one, what you would get down is some sort of a distinct curve. Now say I did it

once for 1000, I got this kind of a curve in red. Now, again I did it for 1000 times I got this

kind of a curve in blue, both of these curves are quite similar to each other this what you will

find out. Now, next time for a different kind of tissue where the cells are much more densely



packed, so this may be say fibrous tissue where you have very thin fibrous (()) (19:32) and all

of them are quite densely packed.

And then if you look at them what you would see is you also get a similar kind of curve if

you are doing this experiment every time, but there is sharp difference between the curve

over here and the curve over here. So for different kinds of tissues you are going to get a

different  kind  of  distribution  curve  and  that  distribution  curve  is  what  is  denoted  by  a

Nakagami distribution function as we have over here. Now this is what was theory proposed

by Mohan Shankar in  one of the early papers  and we make use of this  whole theory of

Nakagami distribution of ultrasonic signals and then come down to our actual work. So that is

where we start by defining the statistical physics of ultrasonic backscattering.
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Now what we did for our work is quite simple, so we had histologist because it was done in

vitro,  so  that  means  that  you  have  dead  bodies  or  cadavers  form  which  the  heart  was

extracted  out  and  the  artery  was  pulled  out  and  then  there  was  circulating  saline  in  a

refrigerating environment and the ultrasound was acquired. So we could do it but then it was

all a glass model and it was a in vitro data acquisition, so from that what we have is that this

whole histology was registered with the ultrasound image which we have over here, such that

every point on this ultrasound image corresponds to a point on the histology and we decided

to look into different regions.

So say I take this region over here which corresponds to this region and we know that this

part is Lipidic by looking into the histology on the histology reports. Now, over there we keep



on looking into multiple times of this ultrasound going down and then looking to what the

probability curve looks like. Similarly we repeat the same thing for Fibrotic tissues, we repeat

the same thing for Calcified tissues.  Now if  we look carefully over here across multiple

measurements there is a mild variation, but more or less the shape of the curve is quite similar

as well as the height of the curve is similar. Similarly, for Calcified and Fibrotic also we have

a similar trend and each of this different kind of tissues exhibit a different kind of curve.

So that definitely means if I have a parametric form of representing and that parametric form

of  representing  is  my  Nakagami  distribution,  so  some  parameters  of  my  Nakagami

distribution should be specific to Lipidic tissues, so there should be a bound of parameters or

group of parameters within Nakagami, which will specify that it comes from Lipidic tissue,

there will be a group of parameters which would specify that it is Calcified tissue and there

would be a group of parameters which would specify that it is Fibrotic tissue and this is what

we make use of in our problem.

So  there  were  a  lot  of  papers  in  earlier  days  who  had  also  made  use  of  these  kind  of

properties  in  order  to  discriminate,  but  under  an  assumption  that  you  need  to  manually

delineate a mass of tissue and then find it out because whenever you are going to do some

sort of a parameter estimation within and estimator framework, you would need the number

of samples or (()) (22:28) samples to take down for doing it. So that would mandate that you

have a very cohort group of samples coming down over there which is similar to each other.
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Now, although like they were doing it manually, but our task over here is to make it a totally

automated process where you get signals and you just analyze them, the clinician over here is

not  going to  point  out  that  this  is  my cohort  region which  I  would  like to  segment  out

actually. So in order to do that what we try to do is let us think of putting it into some sort of a

probabilistic decision making framework. So given that I have a value of signal r coming

down or my intensity of the ultrasound image, I want to predict out what is the probability of

belonging to a particular type of tissue y and this is what it would look down in a Bayesian

standard Bayesian paradigm in including your likelihood and your prior probability and the

evidence over there.

Now from this  if  we look into  this  likelihood function,  what  you would  see is  this  that

likelihood is going to be some sort of a summation of multiple Nakagami coefficients and

then there would be a weighted combination of all of these different ones across different

scales and together this is going to expand into different kind of polynomials.
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Now, in total these introducers are major challenge that we do not know what are the scales

over there, what are the correlations between the scales, then the number of components and

the  prior  probability  of  each  of  these  components.  And  together  that  makes  this  whole

problem as a intractable problem. Now in order to solve this what we end up doing is we

have some sort of a proposed solution in which what comes down is that say this probability

is posterior probability of belonging to a tissue type y, given a particular signal value r and

some unknown factor, so we need to figure out what this factor is. If we use this unknown

factor as some sort of guidance across all of them we should be able to get that work out. 



Now what  we decide  is  we call  this  unknown factor  as  this  statistical  physics  model  of

ultrasonic backscattering and will come down to how that thing is computed out and it was a

it is a very simple process by which you can compute out. Now, what at the end we can do is

that given that any kind of a bunch of signals come or one single acquisition over there, then

on that you will have to figure out this factor over there and given that you have a good set of

training data then using all of them you can always train a classifier which can solve this

whole problem and this  is  what typically would be called as a transfer learning problem

because you are going to transfer your knowledge from one set of attributes which you have

learnt to learning another set of attributes over there.

So from this what we end up getting is this sort of a total framework in order to do tissue

characterization. So the idea is something like this that you want to estimate the Nakagami

parameters and for that what we would do is since I said that you need a finite number of

samples, which are coming from a cohort. But the problem is that now it becomes a Chicken

Egg problem, until I can see what tissues are there I will never be able to delineate what is a

homogeneous mass of tissue over there, until I eliminate and isolate one homogeneous mass

of tissues so that I get down all my readings perfectly, I will never be able to calculate what is

my estimator over there.

Now what do we do in that case, so what we make use of is again that sort of a pyramidal

decomposition framework. So we start by assuming that there is some sort of a homogeneity

at a scale. So say be starting on a small neighborhood of 3 cross 3, then we expand this

neighborhood to 5 cross 5, 7 cross 7, 11 cross 11 and then keep on going.
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Now as you keep on expanding what would happen is that say at 3 cross 3 it is homogeneous,

say at 11 cross 11, it is homogeneous, then obviously at 7 cross 7, a lower scale also it is

homogeneous and any of the lower scales it will always be homogeneous that is how it is

supposed to be. But then say at 5 cross 5, it was homogeneous, but at 7 cross 7, it is not

homogeneous ok, but all the other scales over there had a very good estimator. Now if you try

to create at each pixel level a whole stack of these estimators over there, so that would in

term end up being an array of estimators and these would be something like features of a

single pixel over there. But it is no more features in terms of textures or coherence matrices

or local binary patterns, but these are now features in terms of some estimators which have a

basis is in the statistical mechanics of ultrasound, ok.

And using all of those features we train a random forest and then so that it can do a very good

estimation solving over here. So this output is just a color blended output of the probability

ones. So this blue one is what denotes a Calcified tissue, red over here is what denotes the

probability  of having a Necrotic  tissue,  yellow is  what  denotes the probability of having

Fibrotic tissue and although if you we have examples later on where I would show you a

sharp distinction between the Calcified and the Fibrotic which we could identify with this

method and pink over here is what signifies the Lipid deposition completely over there.
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Now another important aspect which we make use is borrowed from this one of these papers

by in  the journal  of  medical  image analysis  and this  was about  understanding ultrasonic

signal confidence and the cue what we use is that since ultrasound as it propagates two tissues

and  we  have  studied  it  is  going  to  attenuate  significantly  and  if  there  is  a  significant

attenuation, then we will not be getting very good reliable estimates. So we need to find out

some  sort  of  estimation  about  how  reliable  the  signal  is,  and  that  is  what  is  called  as

ultrasound signal confidence.

So we use a  typical  random works  like solution framework in  order  to  get  down signal

confidence and so that is quite beyond the coverage areas, you can read more details about on

this particular paper as well. So what it gives out is at every point on this signal acquisition

space, it will give out a probability in the range of 0 to 1. 0 would denote that the signal has a

very low confidence over  there of returning back and so the estimator  might  be a weak

estimator or rough estimate, whereas, wherever there is a high value or close to 1 probability,

it means that the estimation is very good over there.
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Now, using all of that we fit that into a transfer learning framework so what we do is we have

one  estimation  of  signal  confidence,  also  an  estimation  of  these  speckle  statistics  of

ultrasound using those Nakagami parameters at multiple levels. And then from ground truth

labels we learn down a random forest, now ones this is done, this is what is carried down in

the offline process, after that we start with the online process in which what happens is given

that there is a signal acquisition happening over there. Immediately all of these estimators are

carried down and then this model is transferred over here such that you do a feed forward

through this model and then you get down the probabilities and coming down for different

kind of tissues.
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Now one good thing is that we use a random forest for learning over there such that this

makes our whole process independent of topological behaviors of samples as we had studied

in the random forest lectures. So you do not need to understand typically as to what is the

prior  probability  of  the  samples  or  you  will  not  be  needing  to  a  priori  know about  the

topology of the feature space on which you are going to have your discriminator coming

downs,  so  whether  you  have  a  linear  discriminator  or  quadratic  discriminator  it  is

independent of that and that beauty of random forest is what helps us in learning this whole

feature space in a much stronger way.
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So together with that we did prove it on an experimental data which was in vitro and they

were  all  acquired  at  40  megahertz  intravascular  ultrasound  from Boston  Scientific  with

sampling frequency of 400 megahertz coming down such that we had in one 360 degree

rotation of this you had 256 such scan lines and each scan line had 2048 samples over there.

So the whole signal space for me has basically 256 columns which is one scan line is one

column and you have 2048 number of rows, such that each row denotes one sample along a

scan line. We in total had 53 such acquisitions from 53 different slices which were from 13

different cadaveric hearts.

So there were different arteries on the heart, where different plaques were there and for each

plaque we had one typically acquired signal taken down which was with consultation of our

interventional cardiologist and cardiovascular histopathologist,  so they were the ones who

were  responsible  for  choosing out  which  locations  to  actually  sample  down and analyze

further.

(Refer Slide Time: 31:15)

Now with that what we got down is something like this so we have a method which is quite

good in characterizing so on this side, on the right hand side you would be seeing a relative

probability changes over there. So this is the probability for finding out Calcified tissue, now

this is the probability of finding out Fibrotic tissue now if you look over here the region

where you had Calcified tissue there is no Fibrotic tissue at all collocated and that is quite say

that is biologically quite relevant and correlated. Now this is the probability of getting down

Necrotic tissue and this is the probability of finding out Lipidic tissue. Now if you carefully

look between both of them since Necrosis is a latest stage of Lipidic, so they need to coexist



in some way and you can see this co existential probability quite distinctly coming down over

here, ok.

(Refer Slide Time: 32:06)

Now this is almost quite towards the end of it, so now for different staging is what we had. So

what we had done was we had for different arteries which were in different stages of plaques

and then for each of them we decided to look into how the behavior comes down. Now from

a machine learning perspective in the context of medical image analysis you would often note

that some of these samples have missing classes. So over here say there is no Necrosis and

there is no Calcification at all, this is an early stage. Still it is going to predict and there are no

false positives coming up, this is a stage when in these 2 stages also there is no Necrosis

coming and it comes only over here. So there are missing classes in the data itself and it is

still very efficiently going to predict it out, including like learning hem perfectly.

But obviously if you try to learn with this sample without any Necrotic example, then your

model will not have any Necrotic learning ability as such. So that is one thing which you

need to keep in mind as to how to choose down perfect examples for learning.



(Refer Slide Time: 33:00)

Now from there I come down to this performance evaluation so what we had done was we

had compared our predictions with observers and we did do an Inter-observer  and Intra-

observer variability scoring by assessing our predictions with respect to the histologist over

there  and  this  was  done  by  clinicians  who  are  train  to  interpret  cardiovascular

histopathologies directly, so ours is a computational model and you have a actual histology to

compare with. So if you look over here the diagonal line over here shows down quite close to

100 percent some of the highest values which you see and the cross diagonal shows very

lowest values. So they definitely signify that the method is quite consistent as far as inter and

intra observer variablities are  concerned,  and you can read through the papers which are

linked down at the end of it for much more details.
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Now from here I come down to the significant point of that we needed to domain adapt

definitely this whole thing and the major problem was because this has to go for in vivo

instead of in vitro where it was trained. And so what we decided was we have this whole idea

over here that once you have the train model which is in vitro trained over there, then we

need to do some sort of an adaptation and for this adaptation part is when we make use of

very small number of samples coming down in vivo but you do not have do not necessarily

have a histology coming for that one.

You just have in vivo acquisitions and the whole idea was that unsupervised way how can

you adapt these models when you do not have a tissue characterization, so the ground truth

labels available in any of them. Now for that we did do, so the since that part is quite beyond

the coverage which we can do over here you can definitely look into it.
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But to come down to a fun part as to what we could achieve by doing it is that we had

fortunately for some of  the animal  experiments  what  we had was we could sacrifice the

animal at later point of time. So you could do an in vivo acquisition and then take out once

the  animal  is  sacrificed  or  dead  you  can  pluck  out  the  artery  and  then  do  an  in  vitro

acquisition over there and do histology. Now you can compare your in vitro prediction results

with your domain adapted model for in vivo predicted results on that and with the histology.

And if you look over here, then our method has quite consistent performance, this is the one

for in vitro over there and this is the one with in vivo what we show.

Now our results which we show for this in vitro to in vivo are quite consistent with each other

compare to other base lines which were very simple methods of trying to either train on

directly on this in vivo data or trying to directly deploy the in vitro model in case of on the in

vivo data itself. Now these are again extensions from the first lecture of this week, where we

were studying about domain adaptation in case of retinal image analysis and the power you

could gain by using a lot of in vitro data, or healthy data, or some other experimental data to

pre-train your model and then just (()) (35:56) adapt it to be really superior performing than

having to train on limited data.
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So this is the particular paper on which you will find more of the details and I would suggest

that you look through it. So with this we come to an end and to read more about them you can

read refer to these 2 of our earlier publications. The first one has a much more detailing about

the ultrasonic statistical mechanics and then how you can use it and then the whole concepts

behind that. So with that I come to an end to ultrasound tissue characterization and thanks.


