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Welcome back to the course on Architectural Design of ICS. So, in the last class, we

have  seen  that  how  this  conditional  sum  adder  has  been  that  means,  what  is  the

architecture for that, how we can; that means, develop the architecture of conditional

sum adder and the basic starting; that means, the idea has started from the this carry

select adder operation ok.

So, we are doing what? We are putting a redundant computation to reduce the number of

delay by putting extra hardware to the corresponding circuit ok. So, that we have already

seen in the last class. And we have seen that why we can we say that this is the most

possible the fastest adder among all the adders what we have seen till now because that

only  the  delay  level  is  only  one  full  adder  cell  plus  the  multiplexer  the  number  of

multiplexer delay is that is log 2 base n ok.

So, where n is if I consider 16, at that time 4 multiplexer delay; if I consider, that means,

consider 8, so, at that time 3 multiplexer delay. So, within 8 to 16. So, any of this value

for n value, it will be 4. So, from; that means 4 to as the 8 ok. So, 4 to 8 any value for

that or 4 to 7 if I consider. So, for 4 to 7 any value if I consider. So, at that time this

corresponding multiplexer number of multiplexer will be this 3 number of multiplexer,

for within 4 b i t, I need 2 multiplexers something like this I need to.

So, this is,  but the thing is that whenever we have to design for the disadvantage of

conditional sum adder is that, as we are increasing the number of this multiplexer and the

circuit becomes much more complex whenever we consider more number of bits ok. So,

these as though it follows one regular structure, but if we consider; that means, more

number of bits, at that time the connection becomes very much; that means, complicated

as there are so much, so, many that means, components which you need to wire, so, that

becomes very much complex whenever we are we consider more number of conditional

sum adder bit ok.



So, for that reason, there is another adder are actually not for the that reason; there is a to

reduce  actually  we  know  that  that  carry  look  ahead  adder,  we  generate  and  then

propagate the carry and based on that we calculate the sum and carry for each of the

stage ok. So, to reduce the, that means, and in the expression what we have seen that this

C i plus 1 that is equals to g i plus p i into C i ok.

So, yeah actually C i plus 1, that is equals to g i plus p i into C i. So, if I consider that I

equals to 7, so that means, C i that you has to consider that has to for the last term, it has

to consider this p 7, p 6, p 5, p 4, p 3, p 2, p 1, p 0 and then the input carry which is c 0.

So that means the levels that will increase if my I restrict the fan in. So, at that time, the

levels is increased because of this particular ANDing operation which is which I required

for this g and multiplication of g and p.

That means, the generation of the sorry this propagation of the carry ok. So, to reduce

that there is one that means, that adder has evolved which is known as Ling Adders ok.

So, then how it reduces this a number of that means, terms in carry look ahead adder,

that we will see.

(Refer Slide Time: 04:36)

So, this is the CLA; that means basic CLA operation. So, the p i signal that is a i XOR b i

and g i is a a i dot b i. Whereas, C i plus1 that has been generated based on this g i plus b

i into C i and s i is generated from p i XOR with C i but according to lings equation, they

have modified the equation in such a way, so that it can reduce the number of terms



which are related which are coming for these particular things. So, it says that this t i

equals to a i plus b i and g i equals to a i dot b i and this H i plus1 equals to g i plus t i

minus 1 dot h i ok.

So, initially what was there; that means, that was p i was a i XOR b i, but here this is OR

and that is this t i minus 1 and this s has been calculated based on this t i XOR with H i

plus1 plus g i into t i minus 1 into H i.

So, this is the modified equation. If you see if you just that means, compare this two

equation, it is same like the generation of the; that means, propagation of this generation

and propagation of the carry where this is basically modified with h, this c is modified

that means, changed with or renamed as h here and s has been this is not XOR operation

this is with C i only; this is XOR with this H i plus 1 along with OR with this g i t i

minus 1 in and H i ok.

(Refer Slide Time: 06:40)

Then what is that; that means the function of this. So, variation of CLA is that C i plus in

C i plus 1 equals to g i plus g i C i plus c p i in dot C i ok.

So, if I just rewrite it in this term. So, at that time g i will be g i plus g i plus p i dot C i.

So, this g i plus p i, that is as this t i ok. So, and this according to this ling equation, so

this H i can be written as this g i plus t i minus 1 dot H i minus 1. So, here you see, ling



uses different transfer function; four of this function have desired properties, ling is one

of them.

(Refer Slide Time: 07:35)

So, in the conventional method, if I just for C 4, if I consider 4 bit. So, at that time if you

see at the last term what I said that at the last term what I need I need this here if I

instead of that p, if I just replace that with t so; that means, I need t 3, t 2, t 1, t 0 along

with this C in which is the first carry input bit. But according to the ling equation, if I just

write this, so at that time H 4 will be written as t 2, t 1, t 0 and C in. So that means, these

5 requirement  in  conventional  carry  look ahead adder  that  has  been reduced in  ling

equation where this is basically; that means, here if the fan in is 5 here, the fan in is 4.

So, if the fan in is 4 here and the fan in of 5 here, that means, we can reduce the delay.



(Refer Slide Time: 08:43)

So that means, then the advantage of Ling’s Adder? Uniform loading in fan in and fan

out this H 16 contains 8 terms as compared to G 16 that contains 15, ok. So that means,

if I consider this g sorry, this C 16 at that time I need according to the CLA, I need the

term as 15. But here in according to this new equation of H using this 8 number of terms,

I can compute this H 16. Then, H 16 can be implemented with one level of logic while G

16 cannot.

So that means, then obviously, as I am I can increase or sorry, I can decrease that number

of  logic  level  that  means,  I  can  improve  the  corresponding  speed  or  the  operating

frequency of the adder design using this lings equation.



(Refer Slide Time: 09:46)

And this is basically, this 32 bit adder, this Ling’s Adder that has been used in IBM 3033

model. And then; that means 3 bit addition in 3 levels of logic and then 5 level of logic

for 64 bit adder used in HP processor. So that means Ling’s Adder is very much useful in

the earlier days.

(Refer Slide Time: 10:30)

So, earlier days, that processors accomplished this computer microprocessor ok. So, then

this is this one work which is basically if you just want to that means, know more on this



Ling’s  Adder  architecture.  So,  you  follow  the  work  on  this;  that  means,  which  is

approved; that means, published in international solid state conference in 1996 ok.

So, there you will get how that means, the equation has been developed and how the, that

means,  from  this  particular  equation,  how  the  corresponding  architecture  has  been

developed, that you will find that means, in details in this particular paper ok.

(Refer Slide Time: 11:09)

So, that, this is the transistor level implementation of lings equation, ok.

(Refer Slide Time: 11:13)



And we all this, you will get from this particular paper. So, I am not going into the

details of that then. So, that is the advantage of that means, Ling’s Adder. And what is

that? That starting point of that is the carry look ahead adder that then the present days

basically, we use this Prefix Adders or The Parallel Prefix Adders; that means, here what

we do; that means, suppose I need to add two numbers a and b.

So,  at  that  time  in  the  in  the  that  means,  conditional  sum also  what  we do we pre

compute those values and then we add or actually in condition of sum, what we do we

pre compute those values considering 0 and 1 and then based on the multiplexer we

basically select with signal I have to pass at the output level.

And in carry look ahead adder what we do, we basically; that means, initially from the

bit; that means, input bit we basically generate and then propagate the carry we have two

logic, one general for generation of the carry; one for propagation of the carry then based

on the equation now we are trying to calculate the sum and carry output.

So, here also the same thing ok, so it has; that means, this parallel prefix adders it has

that means, this pre processing and post processing that means, scheme.

(Refer Slide Time: 12:55)

So, it has follows two method ok. So, in one method, there are the follows three step; one

step one is Pre-processing. So, pre processing in pre processing generate the carry using

this particular equation and propagate the carry using this particular equation and then



you  compute  the  prefix.  So,  how  you  can  compute  the  prefix?  The  prefix  can  be

computed using g i k. So that means, this is nothing but a actually we will see this the

corresponding graph of this different adder architecture parallel prefix architecture.

So, here actually we will get one node or this will follow one regular structure ok. So,

considering we have to generate this g i k based on this particular equation. If i n k k

both the values are same. So, at that time g i will be the g i k value and if it is not if i and

k, they are not same. So, at that time I have to do g i j plus p i j in dot g j minus 1 k ok.

So that means, this is the coordinate of g and p which are basically presented within

these parentheses.

So, then again for p, this is for g and this is for p, again we have to follow another

equation. So, for I equals to k that will be p i or otherwise it will be p i j dot p j minus 1

k. So, then again I need, so once this pre prefix computation is done based on this post

processing of g i and p i, then we can go for this post processing for calculating the

corresponding final carry in and sum bit. So, the C i value is G i 0 and this sum is p i

XOR with C i minus 1 ok.

So, this finally, will generate, so that means, this is a simple logic which will generate

the corresponding sum and carry for each of this stage. So that means, now if I consider

7 bits, so, at that time this will varies from 0 to 7. Then again, there is another method

where in this method one we are taking g i and p i. So, in another method, we have to;

that means, take or we can take 3, 3 variables that is g i, p i and k i where k i is nothing

but this XNOR operation sorry NOR operation of a i and b i.

And then, for prefix computation we will use this k i instead of p i in this case we will

use this k i as by following this particular equation that is g i k that is g i and g i j plus k

bar i  j dot g into j minus 1 to k. If for i equals to k that is g i for i not equals to k, then

this equation and for k i k that is for i equals to k k i; that means, the bar of or the

complement of k i otherwise k i j dot k i j minus 1 to k otherwise. And then again finally,

follow the same post processing for final computation of the for each of this position or

the each of the stage; that means, again same if the carry that means, i is vary varying

from 0 to  7 so;  that  means,  then for  7  this  will  be this  sum and carry that  will  be

computed ok.



(Refer Slide Time: 17:15)

So, then whenever we are computing these parallel prefix adders, so at that time it has

two follow two; that means, property it has to follow. So, once or; that means, there are

basically two properties which are related to this parallel prefix adders. So, one of the

property is Associativity and another that means, of the property is Idempotent property

ok.  So,  the  Associative  allows  pre-computation  of  sub terms  of  the  prefix  equation.

Whereas,  this  idempotency  allows  these  sub terms  to  overlap,  which  provides  some

useful flexibility in the parallelization of the corresponding circuit ok. So that means,

how we can that means, define this associativity property. So, if I am having this g p, this

is the dot operation with this g p of j k.

So, here you see that this is the within this parenthesis that that means, corresponding

term this is h to j and this is j to k, then I can write h to i to i to k; that means, this j can

be replaced as with i. And for this k dash that means, this is for method 1 and this is for

method 2 where this I am, for method one I am using p for method 2, I am using k.

So, for method 2, this is g k bar h j. So, j to k, so, again it can be written h to i then i to k

ok. Then for idempotent that means, idempotent this property, I can write this as the

same; that means, where this here for this method 1, it will consider p; for method 2, it

will consider k with the equation is only different ok. So, these two properties are related

to parallel prefix adder computation.



(Refer Slide Time: 19:41)

So, whenever we are that means, telling this dot operation, so, what does it means? This

simplifies the representation of g along with k or p p for method 1, k for method 2, an

operator called as dot operator represented by star is introduced to create group generate

or group kill bar.

So, how we can that  means,  in method 1,  in method 1,  this  is  the dot operation;  in

method 2 this is the dot operation, ok. Here you see this is the; that means, in method 2,

this is the dot operation in method 1 this is the dot operation ok. So, what I need is

basically, so based on this we have to; that means, what we are doing this prefix we are

basically pre computing and that is basically work or that is represented by one node.

Now, we will follow the; that means, one regular structure to compute the corresponding;

that means, the bit or the corresponding; that means, the sum and carry value for each of

this bit position ok.



(Refer Slide Time: 21:02)

So, how we can do that? Suppose I am having this 16 bit inputs or 16 bit that means,

addition  I  require.  So,  this  blank box, this  white  color  box, they represent  or this  is

nothing but this is the DFG of these parallel prefix adders which is known as Sklansky

Adder ok.

So, here this basically represent these input nodes, this black boxes this black boxes they

are represented basically the dot operator. So, dot operator we have already seen that g

and k p for method 1 and g and k for method 2, ok. So, these are the dot operators and

these are the semi dot operators ok. And based on that, we can get the final output ok. 

So, I need this four stage if I am considering this kind of this; that means, whenever this

will; that means, the carry from here that will effect this, then carry from there that will

effect  this.  So,  then  again  this  carry  can  be  come  to  here.  So,  this  is  one  of  the

architecture if you follow. So, what we have to do? Here, we have to compute the prefix

based on method 1 or method 2. So that means, this dot operators or this particular semi

dot operators based on the equation what we have seen in the earlier section.

So;  that  means,  now  what  does  it  means,  this  basically  needs  two  that  means,  the

coordinates of 2 as if I represent this as a 2 D graph. So, at that time, so, in this direction

and in this direction I need to; that means, represent this particular point or this particular

node  ok.  So,  that  is  why,  based  on  this  from  which  node  to  which  node  will  be



connected,  so  that  we  will  get  from  the  corresponding  information  which  we  have

already mentioned earlier, ok.

So,  here  in  this  case  if  we  consider  this  particular  Sklansky  adder  method  or  this

Sklansky, this is a DFG of this Sklansky adder,  if  we follow that,  so the number of

computational node that will be n by 2 log 2 base n if n is 16, so then here 8 and for this

is 4, so that means, total number of computational node will be 32 and the optimal depth

will be log 2 base n; that means, there is 16 means 4.

(Refer Slide Time: 24:20)

Then there is another method which has been proposed by this two particular scientist

this; that means, mister Kogge and Mister Stone. So, they have named this that means,

adder architecture as Kogge-Stone adder.

So, there are that means, you see more of the that means, this corresponding; that means,

operators are overlapped to each other ok. So, whenever here that means, overlap to each

other means, we are increasing the corresponding number of this computational node.

Though the that means, optimal depth, if I consider the previous case the optimal depth

remains same ok, so the number of these black dots and these gray dots that increases

along; that means, in this particular Kogge-Stone adder.

So, the here the number of computational node is n log 2 base n minus n plus1. Then

again to improve the corresponding performance of this Kogge-Stone adder, we have



another architecture which is this Brent-Kung Adder. So, here what is that means,, how it

has been generated, by setting the fan out to 1 and another that means, problem with this

is that here more wiring is wrings are there.

(Refer Slide Time: 25:55)

So, to reduce the number of wire, we have that means, come to this adder architecture

which is Brent-Kung adder ok.

So, this basically avoids the explosion of wires which basically happens in that means,

Kogge-Stone adder and it is more efficient to insert buffers in; that means, in compared

to this ; that means, according to this Brent-Kung adder scheme we can insert the buffer

more efficiently ok.



(Refer Slide Time: 26:33)

So, then again if we just follow the circuit that means, the architecture for this Brent-

Kung adder. So, here you see, this is the architecture for this Brent-Kung adder.

Here the number of that means, the these nodes that are decreasing, but here you see at

the num that means, with this; that means, as the number of nodes are increasing, that

means,  decreasing  the  number  of  stage  that  are  basically  increase,  sorry  this  as  the

number of nodes are decreasing, but the number of stages are increasing for this Brent-

Kung Adder  ok.  So,  this  is  the  that  means,  the  computational  node is  required  this

number and the optimal depth which is can be derived from this particular equation and n

is the that means, the bit consider for the adders or the addition operation.



(Refer Slide Time: 27:33)

Then again whether actually we have this Han-Carlson that means, this algorithm ok. So,

this basically is one this is one like hybrid architecture.

(Refer Slide Time: 27:51)

And here what we do we basically do, to reduce the number of stages we use at the very

beginning, we use at the very that means, in the first we use a one different; that means,

this Kogge-Stone architecture and that in the in the that means, lower portion we use

different  method  to  reduce  the  number  of  states  which  are  the  that  means,  this

disadvantage of Brent-Kung adder.  And here you see, by this  particular  Han-Carlson



adder, so we can reduce the number of computational node by this and the optimal depth

by this ok.

(Refer Slide Time: 28:36)

So, then we will actually this Ladner that means, land Ladner and Fisher Adder, this

basically L and F is Ladner and Fisher Adder; that means, that is the hybrid of this Han-

Carlson that means, adder is the say hybrid of this L S and K S these two ok. So, what is

there in this Ladner-Fisher Adder?

So, in Ladner-Fisher adder we it has follows one different topology where the number of

computational node is n by 2 log 2 plus n and optimal depth is log 2 n plus 1. So, what

this; that means, the number of state; that means, remains same that is 5.



(Refer Slide Time: 29:19)

So, there are again that means, this we have already that means seen this.

(Refer Slide Time: 29:23)



(Refer Slide Time: 29:25)

So, if we just that means, see that; that means, what are the that means, the difference in

this particular adder design if you consider this 8 bit parallel prefix adder considering

different type of adder architecture.

The number of dot, dot means that black box or the black circle and where semi dot

means this gray circle the number of requirement along with this logic depth for 8 bit

parallel prefix adder for Brent-Kung the dot are 4 semi, dot are 7 and the logic depth of 4

for Kogge-Stone, the dots are more and this similar to as there are more overlap ok. So,

that dot are 10, semi dots are 7 and the logic depths that has been reduced that is 3 by

putting that means, parallel computation then Han-Carlson that is 5, 7, 4; for Ladner-

Fisher that is 5, 7, 3 and this Sklansky that is 5, 7 with 3 sorry 4.



(Refer Slide Time: 30:32)

So, this is for 8 bit and then for this is for 16 bit, if you see that which one is the best one

from this, if I just that means, try to calculate this is a minimum number which I am

getting for that means, that is the Brent-Kung adder, but the logic depth that has been

increased. That means, whenever I need area as my major constraint. So, at that time I

will follow Brent-Kung adder; that means, I have the liberty or I can; that means, I can

that means, leave this speed operation. 

That means, the speed is not that much; that means, major constraint at that time where

area  is  my  major  constraint.  So,  at  that  time  I  can  follow  this  Brent-Kung  adder

otherwise, if we if area is my that sorry not that major constraint, but speed is my major

constraint. So, at that time we have to follow this Kogge-Stone architecture.



(Refer Slide Time: 31:29)

So, this is for 16 bit and this is for 32 bit.

(Refer Slide Time: 31:34)

So, here you see that is 5 for 64 bit that is 16 because that is log 2 base n. So, n 64

means, this will be 6 for 128, this will be 7, but the number of dot operation that are on

the higher side in compared to this particular 5.



(Refer Slide Time: 31:52)

So,  then  if  we  take  this  power  and  delay  if  we  take  this  power  and  delay  of  the

conjunction of this particular 5 adder architecture and at that time you see this Sklansky

Adder, that gives you the lower number lower number of; that means, a power delay

product whenever we are that means, developing 8 bit parallel prefix adder using 180

nanometer technology.

(Refer Slide Time: 32:19)

Then this is for 16 bit parallel prefix adder using 180 nanometer technology again, you

just  see  that  the  Sklansky  the  delay  is  basically.  So,  based  on  this  average  power



consumption is 110 and the corresponding this power delay product that is 55, which is

the minimal 1 in compared to the other 4 adder architecture ok.

(Refer Slide Time: 32:53)

And, then, so, these are the; that means, the structure how we can select.

(Refer Slide Time: 32:57)

So, this is the pyramid adder, another adder, how we basically do and we have already

seen this.
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So, the possibilities for further research is that the logic depth is very much important.

So, how we can reduce or whether I can reduce the number of logic depth more that is

one that  means is  very much;  that  means important  aspect.  So,  you can that  means,

further you can just look into that how we can do that. Then fan out is less important than

fan in because if we restrict the fan in so, at that time the levels will increase. So, it is

possible to examine a variety of topologies with restricted and varied fan in. So, that is

also another that means way direction of further research.

Then driving strength and the logical effort rules were overlooked and at least neglected.

It is possible to create number of topologies like this logical rules into account and it is

further  possible  to  combine  the  rules  with  compound domino  implementation  taking

advantage  of  two different  rules  governing dynamic  and static.  It  is  still  possible  to

produce a better  adder.  So that  means,  there is  a,  so,  considering this  particular  that

means, adders things we can take; that means, different different combination of this

prefix addition ok.

So,  different  what  will  be  the  combination,  that  means,  what  will  be  the  optimized

combination of so that I can get in terms of minimized number of this dot and semi dot

operation along with the logical depth will be on the reduce of on the lower side ok. So,

both the things if we can optimize at that time obviously, I will get one very good adder

architectures ok. So, along with this, this is the end of this adder architecture.  In the



future, that means, we will again start with a new chapter in the next class, which is this

different.

We will see now this multiplier architecture, different multiplier architecture that we will

see so.

Thank you for today.


