
Architectural Design of Digital Integrated Circuits
Prof. Indranil Hatai

School of VLSI Technology
Indian Institute of Engineering Science and Technology, Shibpur, Howrah

Lecture - 35
Multiplier Architecture (Contd.)

Hello everyone. So, welcome back, again to the course on Architectural Design of IC’s.

So, in the last class we have seen that array multiplication architecture. So; why we use

array multiplication? Because it has or it gives you the; that means, regular structure for

implementing any multiplication operation in compared to the three based multiplier

architecture, but it has the disadvantage of that means, it has to has the carry is rippled.

So; that means, the delay or; that means, this particular array based multiplier

architecture they are slow in operation ok.

So, and apart from that we have seen that that Baugh-Wooley multiplier can be; that

means, for unsigned multiplication we have seen that array multiplication architecture.

So, that sign multiplication architecture or which is nothing, but the Baugh-Wooley

multiplier. So, that means that sign multiplication architecture that also can be

represented in terms of array multiplier architecture. So, that we have to; that means, we

will see in today’s class ok.

(Refer Slide Time: 01:31)

So, if we see that this is the Baugh-Wooley two’s complement multiplier; that means, all

the multiples which I have to consider in Baugh-Wooley two’s complement multiplier

system ok.

So, as this particular operations are different in corresponds to that unsigned multiplier

architecture. So, then if I have to; that means, if I in unsigned multiplication what was

happening? So, this basically this operation they are very much common so; that means,

whenever I am adding at that at that time; the corresponding this 2 x 0 or a 1 x 1 or a 0 x

2 they that I have already; that means, added ok.

So, but here you see the some of this multiples they are a 4 x 0 bar ok. So, here like a 1

bar x 4 and a 4 and x 4 here I have to add; that means, this these are the extra terms

which are coming at this particular position. So this addition of this extra overhead

because of this; that means, two’s complement multiplier that we have to consider in this

particular case.

(Refer Slide Time: 02:57)

So, how we can do? So, in this array multiplier, for this Baugh-Wooley multiplier, so, for

that reason; so this was the initial array multiplier for this unsigned multiplication ok.

But for what modification I need to make it this; that means, make it useful for Baugh-

Wooley multiplier; that means, I have to because of this extra overhead or extra terms

which are coming at this particular position, so; that means, I need extra cells to be filled

for implementing this array based Baugh-Wooley multiplier.

So, what is that? That means, at this particular for this just P 0, P 1, P 2, P 3, P 4 position

I am getting 2 extra terms which are a 4 and x 4 ok. So; that means, in initial; that means,

multiplier I am having only 4 stage here, but here I need another extra of this element

processing element which will consider this a 4 and x 4 too which will be added with the

previous terms and then that will produce the P 4.

Apart from that what I need? I need at the 2 to the power 8 position or this P 8 position

what I need? I need to add then again 2 extra terms which are a 4 bar and x 4 bar ok. So;

that means, at this particular position here you see at this particular position I need to add

this a 4 x 4; a 4 bar and x 4 bar which are coming through this which is basically I need

one extra processing element block which are of coming; that means, which are taking

the input of a 4 bar and x 4 bar and then that is basically producing the P 8 terms.

Then again there is another extra overhead terms for this P 9 that is 1 ok. So, then that 1

again that will be added with the carry which is being generated from this P 8 block. So,

this carry is being basically the carry for this a 4 x 4 a 4 bar and x 4 bar one carry and the

carry which are being forwarded from the previous stage the which is that P 6 sorry for P

7 stage ok. So, that carry also has to come to this P 9 stage ok. So, they can then again

that will be also passed that p; P 7, P 8 and then it will come to the P 9 stage those carry

also has to add and then I will get the final P 9 over here ok.

And then what other changes I have to do the terms which are typically coming over here

they are different. So, initially it was not like a 4 x 0 bar it was a 4 x 0, but here I have to

put this as a 4 x 0. So, the same as a 4 x 1 bar; so, instead it was a 4 x 1. So, those type of

modification also I need to do to; that means, to make it 5 cross 5 array multiplier

architecture for two’s complement Baugh-Wooley multiplier.

So, here you see that shaded cell indicate additional cells for Baugh-Wooley multiplier

when sum logic is longer delay, than carry logic critical path goes through diagonal then

along with the last row. And can in this can reduce this by causing some signal to skip

rows and these are shown as curved arcs in figure. So; that means, what I can do or; that

means, what is basically happening over here; that means, here what I am doing? I have

increased the corresponding critical path over here; that means, at that time it was 4 and

then 4 here, but here now what it becomes; 5 and then here also 5. So that means, now

the corresponding critical path becomes 10 full adder cell. So, initially it was what I said

if I use; that means, 5 cross 5 array; so, the total critical path delay will be m minus 1

plus m minus 1; that means, 4 plus 4 that was 8 full adder cell.

So, if you see that 4 over here and 4 over here. So, 8 full adder cell maximum, but here

now it becomes 5 and 5; 10 full adder cell because of the extra modification which I need

for this modified array multiplier architecture ok.

(Refer Slide Time: 08:20)

And then this in this corresponding the processing element block also will be changed

initially what was there? Initially it was something like this sum and then carry and then

X n, but here it is being anded this X n is basically anded with a m and then it is gone to

the corresponding full adder cell and then it is producing S i and c i plus 1 ok

So, this AND gate is basically included in the basic cell and then it gives this particular

processing element are copied and it produces the corresponding this array multiplier.

(Refer Slide Time: 09:12)

And if I just; that means, put this in an array multiplier architecture so; that means, in

array based technique. So, at that time only this a 4, a 3, a 2, a 1 and x 0 and in this

particular this particular direction and in horizontal direction I have to give this x 0, x 1,

x 2, x 3, x 4 ok.

And after that I will get the corresponding results P 0, P 1, P 2, P 3, P 4, P 5; that means,

here I do not have to put; this initially what we are doing? That x 0 and x 1; that means, a

0 x 0; a 1 x 0, a 2 x 0 all I am putting at this particular terms, but here I do not have to do

that. So, only one x 0; that means, the anding operation has been done inside this

processing elements ok.

So, this is the unsigned multiplication architecture along with the modified processing

blocks. So, modified processing block means initially we are considering only the full

adder cell, but here we are considering the anding operation inside the processing block

itself ok.

(Refer Slide Time: 10:42)

Then suppose I want to how can I that means, improvise the corresponding speed of

operation? So, what we know that for array multiplier architecture this is the fixed or

that, the delay or the number of stage which I am getting for this the adder stage; they are

fixed which is of 8; 8 number of full adder cell.

Now, as that is fixed now how can I suppose; I need to increase the corresponding

frequency of that circuit. So, at the time how can I do? If I use pipeline technique at the

time I can improvise the speed of operation. So, how I can do that; that means, the

pipeline of this array architecture; how can I do? So, as you see; that means, there is total

1, 2, 3, 4, 5 and in this case; so, 5 stage of operation.

So, in the vertical direction what; we give we put this a 0, a 1, a 2; that means, all the a or

all the multiplicand bit that we give; the multiplier bit are; that means, applied in the

horizontal direction. Now this x 0 that will be first anded or that will come into the first

set of this in the first row ok. And that are with no delay element; in the next this x 1 will

be delayed by 1 register or it will be delayed by 1 ok. So, then again that will come then

x 2 as it has been applied on or the partial products will be generated at the second level;

that means sorry third level. So, it has to pass to the 2 delay over here. So, the x 2 has

been applied after 2 delays.

So, in the same manner x 3 has to applied after 3 delay and x 4 has to applied after the 4

delay. So, that for each of the stage the delay element I have put; so, this is for the input

side; then what will happen for the output case? For the P 0; for the P 0 element it has to

pass, it has to pass through the number of delay element. So, actually if I just; that

means, so whenever I will apply this a 0 and x 0; it will produce this P 0 terms.

But this for P 9 case how many; that means, what is the number of that register block

which I has 2 pass that is basically 4 for this because x 4 has been applied after 4. And

whenever I will get; that means, this particular stage if I go back to these. So, at the very

end then again I need to pass through this like a carry propagate adder or ripple carry

adder for generation of this P 5, P 6, P 7, P 8 and P 9.

So, this can be done based on at this carry is basically propagating. So, initially this P 5

signal that will come for producing the P 6. Then whenever this P 6 will be generated

this then the corresponding output from these 2 particular block; they will be passed 2

because that is one level next. So, there two particular signals, they will be latched and

they will come after this.

In this particular stage that these 2 will be come after 2 delay element and these 2 will

come after 3 delay element; that means, so after 7 delay 4 over here and 3 for this

particular case this; P 8 and P 9 will be generated. But if I see this particular P 0 term, so

at that time P 0 and x 0 is basically generated at the 0th clock cycle.

This P 8 and P 9 they has been generated on the after the 9 clock; that means, sorry 4 and

3; so, 7 clock cycle, but P 0 x 0 has been produced in the 0th clock cycle because there is

no delay element over here. So; that means, this P 0 has to be delayed, so P 8, P 9 that

has to be synchronised with P 0; so; that means, this has to also pass through this total

sorry 4 over here and 4 for this and 3 over here.

So, after; that means, eighth delay element it has to pass why? Because at the eighth

clock cycles only I will get this P 8 and P 9 as this particular cell is producing P 0 at the

0th clock cycle so; that means, this has to pass through 8 corresponding number of stage

ok; so P 0 has to pass through this.

Then P 1 has been produced at what? P 1 has been produced at 1st clock cycle so; that

means, it has to pass through 7 another delay element to these synchronised with P 8 and

P 9. So, that is why if you see; so for P 0 1 2 3 4 5 6 7 8; 8 number of delay element it

has to pass. So, after that P 0 will be come over here. So, for P 1 it has to pass through 7

because it is produced at 1st clock cycle; that means, 1 2 3 4 5 6 7.

Then P 2 it has produced at two’s clock; that means, second clock cycle ok. So, that is it

has to pass through 6; so, 1 2 3 4 5 6; then P 3 that has to at the third clock cycle, it is

produced. So, another 5 clock cycle it has to pass; so 1 2 3 4 5; 5 4 P 3, then 4; 4 has to;

that means, produced at fourth clock cycle. So, 4 another it has to pass so; that means, P

4 which is passing through 1 2 3 4 ok.

So, then for P what will happen for P 5? P 5 is the fifth, after fifth clock cycle it will

produced. So, fifth clock cycle produced means it has to pass through another 3 extra

registers; so, 1, 2, 3 ok. So, then again P 6; P 6 is produced after sixth so; that means,

now 6 is basically then again it has to pass to the another 2. For P 7 it is at 7 so; that

means, it has to pass through another one; P 8 and P 9 that has produced at 8 clock cycle.

So, this has to pass through no other delay element so; that means, whenever I am

getting, at the 8th clock cycle I will get this P 0 to P. So, why 8 clock cycles I need or 8

number of register I need? Because 8 number of full adder cell I am doing or adding in

this particular array multiplier architecture. So, this is the structure for pipelined 5 cross

5 multiplier ok.

So, now here what is the corresponding delay for this particular case ok? So, now, the

delay for this particular case will be of; that means, what will be corresponding delay

element over here? Because the inputs are also passing after one delay element; that

means, here whenever this will be nothing, but one this processing element blocks delay

why is so? Because not this one here only this 4 that processing; sorry 5 total processing

element block. So, that will be the corresponding delay over here because at the final

level I have to process this through 4 and one process one full adder cell delay for this

particular each of this block over here ok.

So, 5 for the final and one for the corresponding delay for this particular cell. So, total 5 I

will I have 2 because the carry is basically propagating in this particular delay cell right.

So; that means, total 5 delay element full adder cell delay element will be the delay for

this pipelined 5 cross 5 multiplier architecture ok. So, this is the pipelined structure of 5

cross 5 array multiplier architecture.

(Refer Slide Time: 21:08)

So, then again; that means, till now we are discussing about this multiplication where

this multiplier and multiplicand bit; that means, the numbers there different. Then

squaring I think squaring means what? x square or y square or a square or b square

means what? I am multiplying the same number; that means, where the multiplier and

multiplicand bit or the numbers are same; so at that time that is the square. So, if I

multiply a with b at the time it will be a b; otherwise if I multiplying a with a. So, at the

time it will be a square ok.

Suppose these 2 multiplier and multiplicand bit they are same; so at that time in regular

multiplier architecture if I put that. So, at that time that circuit also will give you the

same results, but if I need one squaring circuit at the time as there is 2 the number of

multiplier and multiplicand are same; at the time can I produce one optimised circuit for

that for the squaring operation, if I can then how I can do that ok?

So, what are the changes will be there or what would be the idea for doing the

optimisation whenever we will draw or we will come to the architecture of squaring

circuit that we will see now ok.

(Refer Slide Time: 22:55)

So, in general if I that; that means, I want to multiply x with x where or each of are like 5

bit. So, in this position this will be x 0; x 0 this will be x 0 x 1 and again for this

particular case it will be x 0 x 1.

So, x 0 x 0 means what? x 0 is multiplied with x 0 means what this is nothing, but x 0 if I

am a multiplying a with a means that is a why is so? Because if you see if I multiplying a

with that is a because if a value is 0. So, 0 into 0 means 0 and 1 into 1 means 1. So,

whatever is the value of that I am getting at the output. So, that is why a dot a means that

is nothing, but a. So, x 0 dot x 0 that will be nothing, but my x 0 ok.

So, then for this particular for p 1 it will be this and this; so x 0 x 1 and x 1 x 0. So, that

is nothing, but this x 0 x 1 and x 0 x 1. So, if I that means, add a plus a; so, it will be

twice of a; so twice of a means what? The a will come to the next MSB position so; that

means, this position, now this x 1 x 0 that will come to the corresponding next; so, this

will move to the next column.

So, now for p 2 what will be the case? For p 2 it will be x 0 x 2 or x 2 x 0; then it will be

x 1, x 1; then it will be x 0 into x 2 ok. So, for p 3 case what will be the case; that means,

for one it is this for another one this and for another one this. So, x 0 x 2 x 1 x 1 and x 2

x 0 ok; so, this and this is same. So, this and this same means; so, this will move to the

next column and x 1 dot x 1 means nothing, but x 1. So, this x 1 x 0 has come to this and

it will be added with x 1.

For this particular position; so now the thing will be that x 3 x 0 ok. So then x 2 x 1, then

x 1 x 2, x 0 x 3; so x 3 x 0 and x 3 x 0 are same values ok. So, then that will move to the

next and here you see x 2 x 1 and x 1 x 2 they are also same. So, then again that will also

come to the next. So; that means, at this p 3 position what will be there? This x 0 x 2

only; so, x 2 x 0 is coming over here.

So, in this manner if I if I just do it for all this position; finally, what we will get? We

will get the partial product something like this x 1 x 0; x 1, x 2 x 0 at this particular case;

x 3 x 0; x 2 x 1 x 2 something like this I will get ok. So, then again can I; that means,

optimised this more. So, if I add this x 2 x 2 along with x 2 x 1 if I add, so at the time it

will be x 2 1 plus x 1.

So, what is this value? 1 plus x 1 that is nothing, but 1; so this is x 2 so; that means, only

x 2 value I have to add at this particular things. So, the same thing will happen here for x

3; x 2 plus x 3 that will be nothing, but my x 3. So, again more reduction in this; that

means, multiples of this can be done.

(Refer Slide Time: 27:29)

So, finally, what I will get? Finally, this can be ok. So, optimisation can be done in this

way and finally, for this particular case I will get the terms over here 2; 2, 2 and 2. And

then using any first adder if I just add at the time I will get all these values of this.

So; that means, now if I am multiplying; that means, for the squaring circuit; it requires

or we have optimised because of this logical; that means, because of this Boolean algebra

or this logical optimisation we will get the circuit only considering very nominal number

of the basic gates ok. So, that is the squaring circuit; that means the architecture of that

squaring circuit; now I will come from this particular equations ok. So, this is the

optimisation while we will do the squaring circuit ok.

(Refer Slide Time: 28:45)

And then using one lookup tables; what is lookup tables? Lookup tables is nothing but

your like a; that means, some values which are stored in memory ok. So, this is nothing,

but like a ROM structure. So, in ROM what we do? We only put the values and read by

giving the proper address ok.

So, in squaring what we know because for 0 it will be 0, for 1 it will be 1, for 2 it will be

4, for 3 it will be 9, for 4 it will be 16. So, we know as the values are same; so we know

what will be for 1, 2, 3, 4, 5, 6 something like this. So, what will be the corresponding

squaring value; so if I just store it in ROM and then this input that if I just; that means,

give as an address to that ROM. So, any; that means; obviously, I will get the

corresponding output very easily ok.

So, this circuit will be very much optimised so; that means, I do not have to use any extra

logic gates or logical terms to produce the corresponding squaring of the numbers. But

this is advantageous when the number of; that means, the length of input that I am

considering lesser because for 4 bit there will be 16 number I will get so; that means, in

the ROM table the depth of ROM will be 16.

If I consider this a of 10 bit. So, at the time what will be the number of combination over

here? So, that will be 1 0 2 4. So, at the time it will; that means, produced this; that

means, it will request the depth of this ROM; that means, depth of this ROM that is 1 0 2

4 not only this 1 0 2 4 depth it will increase this width of these too ok.

So; that means, 1 0 2 4 number along with the corresponding depth; that means, that is of

20 bit for each of this storing this particular the; that means, this one particular ROM bit.

So, I require 20 bit so; that means, total 1 0 2 4 into 20; so, that will be the size of this

ROM. So, at that time it will consumes more power and it will be slow in operation in

compared to if we implement those squaring circuit using logic gates. So, at the time this

lookup table base squaring circuit is not that much efficient way to implement it.

So, for the lower number of values or the lower width we consider for a at the time it is

advantageous this lookup table base, otherwise this structure is not that much

advantageous in terms of power or in terms of speed or in terms of area ok. So, this is

the; that means, another squaring technique or squaring architecture for how we can

implement or how we can do. And what I suggest that it is whatever we are discussing

here that is not the end. People are basically day by day they are working or they are

doing research on this different architecture, finding out different architecture for high

performance multiplier architecture ok.

So, more if you are interested on more on this learning on this particular multiplier

architecture please follow any scientific websites like IEEE or Google, Google scholar

ok; so, any of this and use your; that means, and from that particular point you come

down how you can; that means, you note down what are the problems or why that or

how you can improvise the corresponding circuit and then you try to build your own

multiplier architecture for your particular application ok. So, this is; that means the n for

integer multiplication ok.

So, now in the next we will see this suppose in some of the case; I need to multiply

floating point numbers. So, at the time how can how can I do? Though we are in the

fixed point domain; so, how can I do this floating point number multiplication ok. And

what are the; that means, way of optimisation or is there any way of optimisation that we

can do whenever we will consider this; so that you will see from the next class onwards

ok. So, this is it.

Thank you for today’s.

