
Architectural Design of Digital Integrated Circuits
Prof. Indranil Hatai

School of VLSI Technology
Indian Institute of Engineering Science and Technology, Shibpur, Howrah

Lecture – 36

Multiplier Architecture (Contd.)

So, welcome back to the course on Architectural Design of ICs. So, in the last class we

have seen the architecture about Multiplier Design. So, how efficiently we can design

multiplier so, that we have seen. So, we have seen signed multiplication and then

unsigned multiplication, what are the architectures, some of the architectures are; that

means, they have been used for area optimization and some of the architecture has been

used for speed optimization.

So, that means, in some of the actually it depends upon the application; that means, for

which application I am designing or I am intending to design the circuit or that particular

multiplier. So, depending on that we choose different kind of architecture. So, and then

we have seen that array multiplier architecture too where there is a regular structure; that

means, the data flow on that particular structure it is very much regular. So, that type of

architecture different kind of multiplier architectures we have already seen.

So, then another point is that suppose we need to do squaring. So, squaring is another

that means that is another form of multiplication where we multiply with the same

numbers. So, we have seen till now whatever is the number we have seen that means, the

multiplier and the multiplicand they are 2 different numbers ok. So, considering that fact

then we have gone for the different architecture for that.

Suppose the two; that means, multiplier and multiplicand both are same. So, at that time

can I do more optimization on the circuit, so, that that it became hardware efficient.

Hardware efficient in terms of that means, that area as well as the power as well as the

speed, can I improve it if I am doing; that means, if I am multiplying the same number

with it ok. So, that squaring circuit now we will investigate on this today’s lecture.

(Refer Slide Time: 02:29)

So, this is this squaring. So, suppose I have to multiply x with x. So, now, consider x are

of 5 bits ok. So, x 0 to x 4 then the same number has been multiplied which is x 0 to x 4.

So, the just like the same multiplication algorithm whatever we have seen it is just

bitwise multiplication initially. So, bitwise multiplication means, x 0 will be multiplied

with x 0, then x 0 into x 1, x 0 into x 2, x 0 into x 3 and x 0 into x 4. Then again it will be

whenever I have 2 that means I will go for this next bit, at that time it will be started

from 1 bit left shift as the position is 1 bit shifted.

So, depending on the weight of this particular position now I have to start from here. So,

just like the same I will get or I will get; that means, I will form the partial products. So,

whenever we are now actually in multiplier what we do? Whenever, we got this partial

product, so, after that what we do? That means, this column wise we just add it.

So, the different the addition method how I will add that is different depending on

different architecture. But here, so, before to; that means do this addition of this partial

products what I can do? That means, here if you just investigate or if you just closely

look that x 0 into x 0 if I multiply x 0 with x 0 that will be nothing but your x 0.

Why? Because if I multiply a with a according to the Boolean function logic, so that will

be a. So, in the next column if you see what I am doing here? X 1 into x 0, x 0 x 1. So,

this is nothing but x 1 x 0 x 1 x 0. So, if I add x 1 x 0 x 1 x 0 twice, so, at that time what

it will be? It will be 2 of x 1 and x 0. So, 2 of x 1 and x 0 means, this position now this x

1 and x 0, this I can write at the next corresponding left hand side. Why? Because this is

the position with weight of multiplied by 2.

So that means, if this is the weight binary weight for this particular position is 2, so, then

this particular weight of this particular position that is 4. So that means, this 2 is

multiplied with another 2. So, 2 of x 1 and x 0 means this x 1 and x 0 can be written here

instead of this particular position ok. So that means, I do not need to add this x 1 and x 0;

that means, I do not need any addition operation to or this ORing operation to calculate

this x 1 and x 0 plus x 1 and x 0.

Just like the same I can remove or I do not require the AND gate which is basically

doing this x 0 multiplied with x 0 why because x 0 into x 0 that is nothing but my x 0.

So, the directly x 0 can be mentioned as P 0 or which is the; that means, the product 0-th

product bit. So, in this way if I investigate this whole term whole partial products, I can

get some of the optimization factors ok.

(Refer Slide Time: 06:24)

So, what are that like if I have to add this x ij with x ji, so, that will be; that means, as

this becomes x ij plus x ij or x ji or x ij both are same. So, that will be mentioned as 2 x i

of j x j x i and x j. So, that can be written as the x i and x j that can be written on the next

MSB position or that will be shifted to the next MSB position. Just like the same what I

said just now that x i if I want to multiply with x i that will be nothing but my x i.

Now, suppose I have to add this particular terms; x i x j plus x i. So, can I reduce this

term? Yes I can reduce or I can write these particular terms in a different way. How? If I

write this x i x j plus 2 x i in this manner that is 2 x i x j minus x i x j plus x i; that means,

1 x i x j has been minus from this 2 x i x j. So, 2 x i x j plus x i is common over here. So,

I take it common and it can be written as 1 minus x j so, 1 minus x j is nothing but x j

bar.

So, that means, now this x i x j plus x i that can be written as x i x j bar at this particular

position and as this is 2 x i x j; so that means, this will be shifted to the next MSB

position. So, that is why this x i x j has been move to the next MSB position ok, got it?

So that means, this particular terms x i x j plus x i that can be written as now x i x j in the

next MSB side whereas, this x i x j bar on the corresponding whatever; that means,

position we are trying to add this x i x j plus xi. So, on that particular position this can be

written.

So that means, this kind of optimization we can do whenever we are doing this squaring

operation ok. So, that means, now at I am removing some of the gates using this kind of

this logical optimization, so that means, now I can save more number of gates. So,

saving more number of gate means I can reduce the complexity, logical complexity and

reducing the logical complexity which we will give me in terms of savings in terms of

power consumption as well as sometimes the improvement in the speed too. So, this is

not the fact that all the time I will get the benefit in terms of speed, I may not get, but

here I can get in terms of improvement in terms of speed.

(Refer Slide Time: 09:38)

So, then there is another method of doing this squaring. So, this is the; that means,

generic method for multiplication which we have already followed for doing this

squaring operation. So, another thing also we can do that means, that is as the number is

basically fixed; number is basically fixed means their number is same. So that means, a

number is same means the number can be either 0 1 2 3 4 5 6 7.

So, that means, any decimal number and squaring means, it will be just 4 will be

multiplied with 4 only ok. So, what we can do? We can store this particular squared

values in the ROM or in a memory ok, where you can see that this 0-th location contains

the values of 0. This one location of the memory contains the values of 1, then second

location of the memory contains the values of 4, then 9, then 16; that means, here this is

the address values.

This is the address values means, so, this is the 0-th location, this is 1, this is 2, 2nd

location, this is 3rd location, this is 4th location, something like this. If I want to choose

that means, this is this for k bit if I that means, if the ROM size is of; that means, k bit

ok. So that means, now I can sorry this input is of k bit, so that means, now I can form 2

to the power k minus 1 number, I can get. So, and this corresponding this ROM can store

the values of 2 to the power k minus 1 square values.

So that means, if I choose this k bit for the input, so that means, the length of the

corresponding ROM size will be 2 to the power k minus 1. Not only 2 to the power k

minus 1, I need this will be basically 2 dimensional; this ROM will be 2 dimensional.

How it will be 2 dimensional? Because, to store this 1, 4, 9, 16; this value, I need the

numbers will be represented or stored in the ROM in terms of binary.

So, that means, for one of this location this value contains the location value contains let

us say 1 and but this corresponds this particular value that may be contains of 16 bit ok.

So that means, if this is the; if this is the; that means, 2 to the power k minus 1, so, twice

k bit I require to store this particular 2 to the power k minus 1 square values. Why?

Because, if you see that just see if for considering this 2 ok, so, they if you consider 2, so

that means, now I require the number is basically squared; that means, that is 4 ok.

So, that means, to if I consider k number of bit for this I need 2 to the power k minus 1,

sorry 2 to the power k number of positions or the length of this ROM will be 2 to the

power k along with that each of the length of this twice of k bit each.

So, that means, now if my k is more, if I consider the k is of that means, in a wide range,

so, at that time the corresponding ROM size will be very much high. So, very much high

means, it will consume more power, more area as well as more power. So, that is why

this particular this look up table base or this is ROM based or I can say this is as lookup

table based; lookup table means, where we store the values. So, this lookup table based

this squaring circuit it is useful whenever the values of k is relatively small.

For higher values of k, we can that means, instead of getting the; that means, here what is

the advantage? That means, we do not a need any computation; that means, the

complexity of the circuit that will be reduced because it is a stored. So, I will face the

data from the memory only. So, if the corresponding suppose the input is let us say let us

consider 3, so, automatically the 9 will be retrieve from the memory.

So, the complexity wise it is very much simpler in compared to the previous circuit, but

the thing is that as the k value will be more, so that means, I require more area as well as

more power. At that time the advantage, though the complexity will be lesser but the

consumption of area and power that will be on the higher side. So, on that particular case

it is not; that means, suggested to use this kind of architecture for squaring operation.

(Refer Slide Time: 15:37)

So, then how we can do this multiplication using this squaring? So, how we can do this

multiplication using squaring? Suppose, I need to multiply a into x, how we can do? We

know the fact that actually this is the basic arithmetic we have learnt in our high school

days.

So, that is a plus x is whole square minus a minus x is whole square divide by 4 so, that I

will get a x. Why? Because here what I will get; a plus x said a plus x of whole square

means, a square plus 2 a x plus x square minus of a square plus sorry minus 2 a x plus x

square. So, minus a square minus x square that will be that means, nullify from here. So,

2 a x I will get here and 2 a x I will get from this particular things.

So, 2 a x 2 a x 4 a x divided by 4 means that is nothing but ax. So, division of 4, means,

if I just discard the last 2 LSB position, so, easily I will get this divide by 4. So, then

what I have to do here circuit wise or the architecture wise what will be the architecture?

Suppose, I am having this squaring circuit, then initially what I have to do? Suppose, this

2 terms; that means, the multiplier and the multiplicand they are a and x, so, in one

particular circuit, so, if I just draw this corresponding circuit, so at that time how it will

be? It will be just like.

(Refer Slide Time: 17:36)

So, a into x if I have to do, so that will be minus a minus x whole square divide by 4. So,

means this is a square plus 2 a x plus x square minus a square plus 2 a x minus x square.

So, these and these this will be nullified divided by 4 mean 4 of a x divided by 4 so, that

is nothing but my a x. So, if I just want to draw this particular circuit, so, at that time

what will be its architecture?

(Refer Slide Time: 18:13)

It will be just like, so, if this is a, this is x ok. So, in one particular case I have to generate

a plus x. So, then again I will having another particular circuit which is minus ok.

So, this will gives me a minus x. So, now, I will have this corresponding squaring circuit.

Suppose, this is the x square circuit, so, this I will get. So, from here what I will get?

That is a plus x of whole square. So, again if I just pass this along with another sorry this

is just squaring circuit.

So, if I just pass this value then again I will get a minus x of whole square ok. Then again

what I need? I need 1 subtractions of this ok. And from here what I have to do? I have to

left shift the results of this, sorry yes left shift sorry, this is right shift by 2 bit or else

what I can write?.

Discard 2 LSB from this particular results ok. So, if you do that then I will get a into x

ok. So, complexity wise or if I just try to calculate the corresponding delay for that so,

then if you see that here I am getting the; that means, for the squaring circuit I can

optimize it ok. But here I need 2 additional, here I need a 1 additional adder, here I need

a 1 additional subtractor.

If I just say in this particular path, I need 1 subtractor here additional, 1 subtractor here

additional. So that means, by using this particular method, if I want to calculate this that

means, the multiplication, so, at that time I can get or I may get for if I consider more

number of bits for this a and x, so, at that time this particular architecture will not give

me that much benefit. Why?

Because, whatever benefit I will get in the squaring circuit that will be; if this particular

bit that means, if the length of a and x they are; that means, more, so, at that time the

complexity or there area requirement or the speed requirement for this extra overhead of

this adder and subtractor that will be degrade the corresponding optimization whatever I

am getting for this squaring circuit.

(Refer Slide Time: 21:55)

So, that is why this particular architecture ok, this particular structure is beneficial whenever

the corresponding length for this a and x, the bit of a and x they are less. Whenever they are

more at that time this particular architecture is not that much beneficial ok. So that means,

hardware design of that if that is not at all advantageous at that time. So, this is the another

method of doing the multiplication using squaring method, so that you can use in your

system. So, apart from that there are again this multiplication architecture is such a; that

means, dynamic field. People are doing more research on that for finding out one efficient

architecture for designing the multiplication.

So, if you find that means literature you can get there are some Vedic multiplication

basic Vedic multiplication methods are there in the; that means, in the ancient Vedic era.

So, that particular algorithms, now you can map into the hardware or you can design into

the hardware to get the multiplier architecture which will be beneficial in terms of speed

or in terms of area or in terms of power; different aspects you can chose for ok.

Apart from that again there are this based on this approximate computing also some of

the multiplier has been designed, means what? In a approximate computing what we do?

We intentionally we put some of the error or we just discard some of the bits and then we

do this multiplication and we pre calculate those errors. So, what will be that means,

intentionally as I am skipping some of the bits.

So, from the beginning we know that because of this skipping of the bits so, what will be

the maximum error, what will be the quantity of the error I can accumulate during that

whole multiplication operation. So, at the end whenever we will produce the result, so, at

that time we will try to calibrate with those errors; that means, pre computed errors to get

the proper result.

So that means, as I have reduce the number of bits from the beginning; that means, the

complexity of the hardware at that time it will be lesser ok. But apart from the at that

time the at the same time what I have to remember that the results that should be correct.

So that means, for the corresponding approximation what will be the error so, that will

be again added at the final stage to get the accuracy also at the topper level or in a

adequate level. So, that type of multiplier architectures is also available in the literature,

people have worked on that and that is based on this approximate computing this

multiplier design.

So, that type of architecture we are not discussing in this particular class. So, if you need

then I will be just putting it, just as a supplementary material in the discussion forum that

I will be supplied ok. Then, till now what we have seen that the multiplier or the

multiplication operation in the considering the number in the like in the integer part.

So that means, here what we have seen? The number that are like 1 2 3 4 10 11 22; so,

those the numbers are basically integer one. Now, suppose if you see most of the DSP

system; in most of the DSP systems, the number DSP system means, suppose if you

want to do the DFT or if you want to do the filtering or if you want to do the FFT or if

you want to do the any transform, like Hilbert transform, cosine transform or then

Hartley transform, sorry.

So, this kind of transform they require the coefficient values or in real time DSP system

the coefficient values of this filters or this transforms are basically considering the fact

they are in the decimal or the fractional part. That means, mostly they are dominated by

the fractional part. If you just see that whenever we are doing the multiplication, we do

not know what will be the value for multiplier and multiplicand so, at that time the

architecture is different. Whenever we know that the 2 numbers are same, so, at that time

we can do more optimization.

Now, another thing is that in if FIR filter most of the; that means, the multiplication

which is being used in the DSP system, there the values are constant. That means,

suppose if I say that this 3-tap filter with this kind of specification, the corresponding

filters parameters or the coefficient values they are fixed for that particular specification

ok.

The same things happen suppose this let us say 8 point FFT if I ask you. So, the 8 point

FFT, the corresponding twiddle factors they are basically fixed, the values of that that

will be fixed. So, considering these fact, whenever we need the multiplication operation

on those system, so at that time can I do it more optimization? That means, the structure

can I do it more optimized? Yes, I can. How I can?

Because the number is constant means, I know the corresponding bit values of each of

these particular coefficients. So, considering this fact that now I can optimize the

multiplier in a better way ok. So, I do not require to use any generic multiplication at that

time to do this multiplication on the DSP system.

So, if I can use if I use it, so at that time intentionally or unintentionally I will use more

of the area or more of the power though because, I have the provision to do the

optimization because I know the numbers from the beginning as a number is already

fixed. So, I can do the optimization or I can play with that. So, how I can do or what is

the; that means, at that time how this technique will be or what will be the techniques to

do this optimization that we will see in the next class.

So, thank you for today’s class. So, next day we will see this constant multiplication and

then not only constant multiplication this reconfigurable constant multiplication how we

use and where it is being used, how we can that means, come to the optimize circuit or

how we can design it that we will see in the next class onwards.

So, thank you for today.

