
Architectural Design of Digital Integrated Circuits
Prof. Indranil Hatai

School of VLSI Technology
Indian Institute of Engineering Science and Technology, Shibpur, Howrah

Lecture - 50
FFT Architecture (Contd.)

Hello everyone, welcome to the course on Architectural Design of ICS. So, in the last

class we have discussed the basics of this FFT Architecture as why we have to know the

FFT the hardware architecture of FFT is that; because FFT is one of the major mostly

used blocks in digital signal processing. It has a wide application in for video processing,

audio processing as well as image processing all the DSP mainly uses; that means, this

fast Fourier transform. So, that is why there are several works on this; that means,

developing the efficient fast Fourier transform hardware architecture.

So, we have seen that there are two type of architecture; one is this decimation in time,

and another one is this decimation in frequency ok. So, in decimation in time the inputs

are in that means bit reversed manner. So, that the output comes in the original sequence.

Whereas, in decimation in frequency we give the input in original sequence and we get

the output gain bit reversed manner. So, today we will see that whenever we will use this

butterfly unit ok. So, we have seen the data flow graph of the fast Fourier transform. So,

depending on that this all this butterfly unit.

(Refer Slide Time: 01:39)

Now, using one single butterfly; that means, this is the serial implementation; that

means, if we use reuse one single butterfly to compute the whole FFT operation. So,

because the butterfly unit is same only the input at different stage the inputs are different

ok. Why because, if I consider this 8 point FFT. So, at that time it will be having log 2

base n it is number of stage so; that means, it will be having 3 stages. So, if we consider

that that if we are having this let us say 16 point FFT.

So, at the time the number of stage will be 4, whenever we are considering this butterfly

of 2; that means, here we are using this Radix-2 butterfly you need to compute the; that

means, the full fast Fourier transform. So, whenever we will use one single butterfly or

we will reuse the single butterfly you need to compute the whole FFT operation.

So, at that time the computation time requirement will be much more higher which

makes the fast Fourier transform very slow. Whereas, the area will be very much smaller

because only one single butterfly we are using ok. So, that the inputs are basically time

multiplexed, but here actually the whenever we are doing this or you are using one single

butterfly.

So, at that time we need the controller should be designed in such a way so, that each of

this; that means, at what stage what will be the corresponding inputs to this particular

node that we have to consider very carefully. So, that is why the controller of this

particular block it will be much more complicated. Whereas, if we are having this fully

spread that means the parallel architecture if we want if we they have just implemented.

So, at that time speed wise it will be very fast. So, why the computation time will be very

fast because all these particular operations are running in parallel. So, it depends upon

the in one particular path. So, how many numbers of multiply multiplication and

additions were run in; that means, doing depending on that.

So, that will be the critical path for this system, there I do not have to wait for that many

clock cycles to what we have to wait for actually in case of serial implementation. So,

area wise this will be much larger than this the serial implementation why because we

are doing here we are implementing in all this that butterfly in parallel.

So, the controller is also very simples because we do not have to; that means, do the time

multiplexing here because all the inputs and all these intermediate signals are already

available in this parallel case. So, that is why the controller is much simpler than this,

this iterative architecture or the serial architecture.

(Refer Slide Time: 05:14)

So, whenever we are considering; that means, there on the design perspective. So, at that

time the systems requirement should be any of the speed, power or area. There will be

trade off in these two cases where actually for the parallel implementation we can

increase the area.

But the processing speeds of the design processor, the FFT processor that will be much

higher. So, which requires more number of processing elements; and this better

processing elements utilization rate ratio as well as this better control scheme in case of;

that means, fully parallel design.

So, but in case of serial implementation or this iterative implementation. So, at that time

there will be lesser number of processing elements required, but at that time of the

utilization of this processing elements as well as this control scheme that will be much

more complicated.

(Refer Slide Time: 06:24)

So, if we consider this one of this, this is the block diagram of FFT processors which

runs in the iterative mode. So, here we are having only one single processing element

block which is nothing, but this butterfly operation then there we are having this

coefficient ROM; coefficient ROM means at what stage what will be the value of the

twiddle factors so those values are stored in ROM. And then we are having this input

buffers, and then we are having this fast Fourier transform RAM.

So, why I need this RAM is that to store the intermediate results and; that means, for one

stage whenever we will; that means, compute all this; that means, for the first stage

suppose for the first stage all the process butterfly operations has been done then those

computed values will be used for the next stage butterfly computation.

So, at that time we have to save or we have to store those intermediate values

somewhere. So, that is why we have to use the RAM to store the intermediate values

which process that what; that means, this butterfly stage wise and stage wise we also

these coefficients are also different. So, that will also store in a read only memory. So,

that at every stage we and who will basically control all this; that means, what will be the

input at what particular stage, or for which butterfly what will be the coefficient memory

and where it will be again stored.

So, everything is the job of this controller. So, that is why in iterative FFT processors this

controller design is much more complicated than the this parallel implementation

(Refer Slide Time: 08:20)

So, the sum of the current architecture actually is that, if we use this pipeline architecture

parallel; that means, parallel of this along with this pipeline structure. So, here this is

basically this structure is known as Radix-2 multi path delay commutator.

So, here you see we are having this coefficient; that means, storage then we are having

these butterfly units. So, then again depending on this this is fully parallel

implementation this is not serial, and if we; that means, what is the; that means,

usefulness of this parallel implementation is that we can use the pipeline technique here.

So, if we use the pipeline technique. So, at that time the area requirement will be higher,

but we can achieve a very high; that means, operating frequency or the computation time

for that particular process FFT processor will be much lower. So, we have some of the

application like if we have to design this OFDM processor ok. So, in OFDM actually this

transceiver we have to design or we need the FFT and IFFT block which will be run in

the giga Hertz range.

So, at that time we have to follow this particular architecture where; that means, the area

if it is taking more area then it is no problem, but speed is my major concern. So, at that

time we have to use this parallel that means implementation along with the pipeline

version of this. So, here you see that this is the Radix-2 single path delay feedback. So,

here only this butterfly this 2 butterfly basically it consist of 8; that means, 8 times here,

4 times here, 2 times here and 1 times here ok.

(Refer Slide Time: 10:31)

So, then again actually this is for Radix-4 single path delay feedback which is been used

for in; that means, 256 point FFT. So, here you see we are having this butterfly unit of 4

which consists; that means, which runs in the loop for 8 times. Then again in the next

stage it runs for the 4 times, and in the third it runs for the 2 times and again it runs for

the 1 time in the final stage ok.

So, then the same thing the Radix-4 multi path delay commutator for this N point; that

means, 256 point FFT they will be like it has to consider this coefficient 4 and then this

will be the butterfly unit 4 and then you have to multiply with this 16, 32 and 42 then

again something like this.

So, this is the structure for Radix-4 multipath delay commutator for 256 point FFT. And

then again this another implementation of this Radix-4 single path delay commutator for

256 point FFT is that here you see we are having this delay commutator of 6 into 64 then

again it is going to this butterfly unit of 4. So, whenever we increase; that means, for 256

point FFT whenever we consider this butterfly unit of 2.

So, at that time how many stages we will having that if log 2 base N. So, 2 to the power

256 mean that is 2 to the power 8. So, 8 stage we have to consider, but if we increase the

radix to 4. So, at that time the number of stage requirement will be log 4 base 256. So,

log base 256 means at that time this number of stage requirement will be divided by 2

ok.

So, but in case of this parallel implementation we can this is also; that means, this

parallel; that means, this is nothing, but serial here along with the parallel ok; that means,

it is not that sum of this butterfly unit in each stage there basically running in serial, but

all as all of these are running in parallel. So, this is the mixture structure of serial as well

as the parallel.

So, according to the; that means, the FFT architecture what we have discussed is that;

whenever we will use more radix or the serial implementation at that time the number of

processing elements will be or the area requirement will be lower, but the computation

time will be slower.

But, whenever we will put more number of processing elements with more number of

area. So, at that time the processing speed will be the computation time or the speed of

operation of the computation of the FFT processor that will be on the higher side, but

here we are. So, these two trade-offs if we can implement or if we can design one circuit

where these some of the portion is serial and some of the portion is parallel.

So, that will give me the; that means, that a requirement for the processing elements will

be 4 in this case, but the time requirement will be like as it is running for 8 times, this is

running for 4 times, this is running for 2 times, this is running for 1 times. So, it has to

wait for so, 8 plus 4 plus 2 plus 1. So, a total fifteen number of cycles to compute the

whole task ok. But, in case of only serial implementation it has to run for; that means,

this has to run for log 4 base 2 to the power 56.

(Refer Slide Time: 14:53)

So, the distinctive merit of this above is that the delay feedbacks are more efficient than

the delay commutator in terms of memory utilization and the Radix-4; that means, FFT

has higher multiplier utilization; however, Radix-2 has simpler butterfly which are better

utilized ok.

(Refer Slide Time: 15:16)

So, if we compare this in terms of radix along with the speed if we increase; that means,

the radix. So, at that time the speed will be higher and if we decrease the; that means,

radix. So, at that time speed will be on the lower. So, the control part if we increase the

radix if you increase the radix.

So, at that time it needs or it will be; that means, if we increase the radix. So, at that time

the control part will be much complicated and if we decrease the radix, at that time it will

be much simpler. So, the processing ability or this the processing elements if we increase

the radix. So, at that time it will be higher if we increase the; that means, if we decrease

the radix. So, at that time the processing elements requirement will be lower. So,

combine the advantage for the decomposed using high radix process, processing

elements.

(Refer Slide Time: 16:26)

So, how we can decompose the FFT for a better utilization or for designing one better

FFT architecture. So, suppose here we are having this four of this multiplier and then the

or addition operation. So, we will just reuse this addition operation the multiplication

operations are in parallel, but we will use this addition operation reuse the addition

operation ok.

(Refer Slide Time: 16:58)

So, then again actually a we can actually we can decompose in another method like we

can consider; that means, 3 different part where we can process k1 then 2k2 and then 4k3

where this n 1, n 2 is 0, 1 and n 3 is 0 to N divided by 4 minus 1. So, this is as we have

considered this three index values.

(Refer Slide Time: 17:34)

So, then again there are actually this is this particular actually method is known as this

decomposition method where on this actually we can compute the first butterfly 1 then

again combination of this butterfly ones now I can make this butterfly 2 unit ok.

(Refer Slide Time: 18:05)

So, what will be the corresponding structure of this is that. So, suppose here we are doing

this. So, here the first stage is the butterfly unit 1 and the second stage is the butterfly

unit 2. So, in instead of actually if we use this kind of; that means, this decomposition.

So, at that time this this there will be one single; that means, the trivial multiplication

with the corresponding minus 1 term for the imaginary part ok.

(Refer Slide Time: 18:39)

So, then actually this butterfly unit 4 you can just decompose it into butterfly unit 2, 1

and butterfly unit 2 which consists of 2 butterfly 1 unit ok.

(Refer Slide Time: 18:56)

So, this is the corresponding structure of butterfly 2 unit where it takes 4 of this this X n

then; sorry this is the real n this is imaginary and this is the real n plus N by 2; where this

is the imaginary n plus N by 2 and it produce the Z n plus real of n plus N by 2; Z

imaginary of n plus N by 2 and Z real of n z imaginary of n ok.

(Refer Slide Time: 19:39)

So, this is the BF2 architecture this is BF2 this is BF1 architecture this is BF2

architecture.

(Refer Slide Time: 19:48)

And combining them, now I can implement this. This is Radix-2 square single path delay

feedback architecture ok. So, where we have this BF2 I and then we have this BF2 two I

considering the above decomposition what we have already used or in the equation we

have shown earlier.

So, here for actually in this particular case we have to this is for 256 point FFT. So, in

this case we have to run it for 128 times then again in 2 we have to run it for 64 times.

Then in the next it will be run for 32, here it will be run for 16. So, all these are basically

running in parallel ok.

So, the original architecture for this 256 point FFT which we have already discussed is

that it was butterfly unit of 4 it has to run for 8 times. This butterfly in the next stage the

butterfly unit 4, has to run for 4 times, then the butterfly unit 4 has to run for 2 times in

the third stage.

And in the final stage is it has to run for one number of iteration ok. So, this is this

particular this is the newer architecture for implementing the n equals to; that means, 256

point FFT. So, here what is the problem is that as we are considering this Radix-4

butterfly. So, at that time the processing element requirements and the controller part will

be much more complicated, but in this case it will be much simpler to implement.

(Refer Slide Time: 21:46)

So, the structure advantage is that the Radix-2 has same complexity has radix Radix-2

square has the same complexity as Radix-4, but still retains Radix-2 butterfly structure.

The stage has non trivial multiplication the control is also very much simple. So, that the

synchronization in the controller and the address counter for this W n ok. So, that is why

in this case the controller as we are considering this butterfly; that means, Radix-4

butterfly unit.

(Refer Slide Time: 22:37)

So, that is why the design that the controller design for this kind of architecture will be

more complicated than this one as we are considering only Radix-2 butterfly unit. So,

then again this is the actually structure for Radix-4 multipath delay commutator block

then we are having this Radix-4 single path delay commutator block. So, here you see as

we are having this multi path means we are combining 4 of the paths.

So, here this is single path means only one single path is basically do the multiplication

operation is performing after this butterfly by only 1. So, all this here parallel

implementation means actually, here also we are following this Radix-4, but the

hardware requirement for this particular case will be much higher than this one.

(Refer Slide Time: 23:24)

So, then again if we consider this Radix-2 single path delay feedback. So, as we know

that that in DIT it will be in bit reverse to normal, but in decimal decimation in frequency

it will be normal to the bit reversed.

(Refer Slide Time: 23:42)

So, then again if we consider this Radix-2 butterfly unit for computation of 16 point FFT.

So, at that time the input will be something will be come to the first stage.

And then this Radix-2 butterfly has to run for 8 times then the twiddle factor will be

multiplied with each of this, that the unit which will be produced from this butterfly

operation. Then again it has to in the second stage it has to run for four times in the third

stage it has to run for 2 times and in that; that means, final it has to run for 1 times ok.

So, this is the basic butterfly structure what we use in this particular processing as the

processing element.

(Refer Slide Time: 24:30)

So, in case of this Radix-4 single path delay feedback. So, this is the Radix-4 butterfly

then we have to run it for N by 4 times, here N by 16, for the next stage and the final one

has to run for only single one. So, here we require log 4 N minus 1 number of multipliers

for this complex multiplication.

(Refer Slide Time: 25:00)

So, the ideal architecture for is that whether I need the minimum number of minimum;

that means, the FFT architecture which will require the minimum number of memory

size for storing the that means the; that means, the coefficient as well as the intermediate

values the minimum number of adder requirement as well as the minimum number of

multipliers requirement.

So, that is why people are basically trying to develop this FFT architecture, considering

all these aspects and what I say is that the when the processing elements; we increase the

radix and the processing elements if we use at that time the controller will become much

more complicated. At that time the memory size either this this will increase the memory

size or it will increase the corresponding this multiplier requirement and the addition

requirement.

(Refer Slide Time: 26:06)

So, we have to develop one FFT processors which will be much more; that means,

enhanced or if which can use minimum number of this resources as well as minimum

number of memory to get the advantage in terms of speed in terms of power and in terms

of area ok.

(Refer Slide Time: 26:36)

So, so the there is another new FFT processor which is this Radix-2 square; that means,

and we can also this is not only that you can do this Radix-2, Radix-4 you can also

implement Radix-8 algorithm, but; that means, the FFT for this video processing we

need the this we need the FFT processors of let us say 8192 point FFT. So, at that time

using Radix-2 butterfly unit it consumes too much of cycles to compute the full toss.

So, at that time we have to consider this this we have to consider more number of radix

for the processing elements you also can do one thing that is mixed radix architecture is

also there; that means, some of the part you can go; that means, compute using; that

means, the first stage you can compute using Radix-8 that second stage you can compute

using Radix-4 the third stage you can use Radix-2.

So, mixed radix architecture is also there to gain the benefit in terms of low area as well

as; that means, a control circuit becomes much more; that means, simpler; as well as you

can get or the processing speed in a reasonably higher than the, that means in if instead

of using only butterfly Radix-2 butterfly unit ok. So, this is one of this; that means,

newer FFT processors where we use this Radix-2 square.

(Refer Slide Time: 28:15)

And this is the equation how we do; that means, derive from this equations and then it

has to implement like this.

(Refer Slide Time: 28:22)

(Refer Slide Time: 28:27)

So, this is the Radix-2 square implementation.

(Refer Slide Time: 28:32)

We have already said; so, in Radix-2 square we are having this butterfly unit 1 and then

we have butterfly unit of 2. So, here the intermediate results are being stored and then

again it runs in serial.

(Refer Slide Time: 28:50)

So, this is the hardware comparison of different; that means, this is Radix-2 multipath

delay commutator block. So, the multiplier requirement is this, memory size requirement

is this and adders; that means, requirements this, this is Radix-2 single delay feedback.

So, this is Radix-2 square single delay feedback.

So, here you see the minimum number of; that means, multiplier requirement

corresponds to Radix-4 single delay feedback, Radix-2 square single delay feedback. So,

all are basically log 4 base N minus 1. Whereas, the memory size for this Radix-2 single

delay format, single delay feedback and this Radix-4 single delay feedback is N minus 1,

N minus 1 this Radix-2 square is a single delay feedback is also the memory requirement

is N minus 1 and; that means, the error requirement is 4 log 4 base N.

So, if you compare this hardware requirement for this different architecture you find that

the Radix-2 square single delay feedback architecture is basically having the advantage

in terms of multiplier requirement, the memory size requirement and the adder

requirement. So, this is the recent day where; that means, FFT architecture which people

have already developed, but it is not that this is the ultimate one still people are trying to

use us trying to develop the newer architecture for FFT ok.

(Refer Slide Time: 30:32)

So, this is the simulation results; that means, you can you can just write the code in

MATLAB and then you can write. As well as you can just do this hardware

implementation and then you can run; the that means, that how much do; that means, in

whenever you are running in MATLAB. So, at that time it is running in the floating point

environment whenever you are running in hardware so at that time this is fixed point in

environment.

So, depending on this truncation or this overflow, what error or what is the difference

between the that actual FFT implementation you are getting in terms of MATLAB or the

actually; that means, implementation you are getting in terms of FFT hardware

(Refer Slide Time: 31:18)

So, this is the simulation results and if you just compare this error. So, at that time in

MATLAB actually in compared with the MATLAB FFT the error in real part that is in

10 to the power minus 4, and in case of imaginary part that is also in the power of 10 to

the power minus 4 ok. So, whenever we do this FFT architecture at that time initially we

have to fix that what should be it is that is what length. So, that this particular this

particular error becomes that it will be much more on the lower side.

So, we initially we have to run the algorithm on the MATLAB to fix all these values and

then we can go for the hardware implementation using different kind of architecture.

And, the ultimate target for designing this hardware hard ware for FFT is that we have to

use minimum number of multiplier minimum number of memory requirement memory is

requirement and minimum number of addition operations which will give me the benefit

in terms of speed power and area.

So, this is it for the FFT architecture if you need to know more then please go through

Google scholars find the latest architecture on FFT or if you need more information then

please let me know via discussion forum, I will provide you the more information about

the recent days FFT architecture for VLSI implementation.

Thank you.

