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Welcome to the lectures on Evolution of Air Interface Towards 5G. So, till now we have

seen  various  waveforms,  and  then  we  have  also  characterized  the  communication

channel  how it  is  modeled.  So, now, it  is  time that  we look into the different  multi

antenna transmission schemes which are helpful in providing higher spectral efficiency

in meeting the new requirements of data rates and spectral efficiency. 

(Refer Slide Time: 00:41)

So, we have been discussing about the classical IID channel in the previous lecture and

briefly  we  will  mention  it  once  again.  So,  that  there  is  continuity.  So,  one  of  the

important things is we assume that the delay spread is negligible; that means, there is the

channel impulse response is very very narrow. So, it is almost approximated to a delta

function with only a delay. And that means it is flat in frequency. 

And we will also assume that it  is slow fading; that means, over time the channel is

fluctuating at a rate which is much much smaller than the symbol duration. So, these are

some of the important assumptions. And then we talked about wide sense stationarity,

uncorrelated scattering and we also introduced the homogeneous channel and then the



narrow  band  antenna  area  assumption.  So,  these  things  have  been  discussed  in  the

previous lecture.

And we also talked about the classical IID channel where it means where we note the

classical IID channel with the H w indicating it is spatially white. So, this H w channel

has certain properties which define H w channel. So, some of the common properties

with the other situations are that the individual elements are 0 mean of unit power, while

when we take the covariance we will find that the R HH should be equal to an identity

matrix  because  the  diagonal  elements  will  be  one  from  this  and  the  non-diagonal

elements would be 0 from this, right. So, that is what defines the classical IID channel

which we will be using.

(Refer Slide Time: 02:29)

We also talked about the spatial fading correlation, where we said that if H is a correlated

channel it is usually modeled in form of vectorization of H which is provided through the

relationship R raised to the power of half; that means, our half and wake of H w. So, you

generate a spatially white channel given a spatial covariance matrix, you can generate the

matrix of H coefficients which are correlated. And we will see the impact of correlated

channel coefficients. 

Although this is a general model, we also said that is simpler and less generalized model

is this where the correlation is split between that at the transmitter and receiver where the

entire covariance matrix is related to the Kronecker product of the R t and R r, right. So,



that  is  how we have described it  and we also mentioned that  H w is  full  rank with

probability  1.  So,  these  are  some  important  things  that  we  should  remember  while

continuing with the description.

So, we continue with this description and we move forward with a few more essential

things. 

(Refer Slide Time: 03:47)

So, just a side note the 3 GPP has provided a description of the full dimension MIMO

channel, ok. So, with the description that we have given, now one should be capable of

going through the details and understanding all the propagation aspects that are provided

for MIMO. 

And we will also try to provide some of the generic results that we have obtained from

that particular model at an appropriate time. 
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A few more interesting important ones that needs to be defined is the squared Frobenius

norm of H. This is important this is what will be used throughout in the next part of the

analysis, where it is denoted as H with double line on both the sides and a subscript of F

and squared, and its meaning is it is the trace of HH Hermitian. 

So, this is the Hermitian operation, which in turn means that you are essentially adding

up all the elements squared together. So, which is can also be interpreted as the total

power gain of the channel. So, that is a critical factor. And what we can also see is that

mod H F square or the Frobenius norm squared of the channel which is the trace of HH

Hermitian is composed of the square of the power of individual terms. Now, h i,j are

random variables and hence mod h i,j squared should also be random variable which in

turn means that the summation would also be random variable, ok.

So, that means, H F squared is also a random variable. And it can be also seen that mod

H F squared since it is the trace of HH Hermitian can also be written as sum of the

eigenvalues where of HH Hermitian. If lambda is are the eigenvalues of HH Hermitian

then from this definition one can also write that Frobenius norm squared of H is equal to

sum of the eigenvalues of HH Hermitian. And the eigenvalues of HH Hermitian would

be square of the singular values of H. So, in other words we are kind of connecting the

singular values to the Frobenius norm or whatever way you want to look at it. So, this is

something that we will be using very soon. 
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And the quantity of interest to evaluate diversity performance and that is what is written

over here is the moment generating function, ok. So, this structure will be used and we

have already established that H F squared is a random variable. So, we need the moment

generating function of H F squared. And it is denoted in this particular case as psi sub H

F squared of nu.

Now, assuming Rayleigh fading, we have described the Rayleigh fading condition.  R

there is a covariance matrix is expectation of the vec of H times vec of H Hermitian that

is what is already defined in previous set of discussions. So, in that case with all the other

above assumptions H F squared nu is defined as; that means, the moment generating

function of H F squared is defined is this value. With this expression there is expectation

of the exponentiated nu which is the parameter and H F squared the random variable. So,

this particular structure will be used throughout whenever we are discussing the error

probability. This only helps us in getting an easier expression for error probability when

we are talking about diversity game. 
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So, this term as we are seeing can be written as 1 upon determinant of I M T M R, we

have M T M R because we have this HH Hermitian and H F square. So, H squared as

you are clearly seeing that it contains of M T M R components, nu times R, R is the

expected value of vec. So, basically if you look at R, R is of size M T M R cross M T M

R because each individually these are M T M R, M T times M R, basically M T times M

R cross this thing cross 1, ok. So, what you can see is that R is an M T cross M T M R

plus M T M R matrix and hence you have the determinant of this quantity where the i is

added of the same order.

And the determinant since this is an identity matrix; that means, all diagonal elements are

1 and this has eigenvalues which are lambda i of R, you can write the same through this

expression which will be used. Again, as of now we will just use this expression we will

take it for given. I mean if you expand this you are going to get these results. And we

will be using these set of results in calculating the error probability, ok.
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So, then we move forward to discuss the spatial diversity which is of our main interest at

least  as of now. And we begin with the description of general  diversity. The general

diversity means that there is some transmission transmitted signal s over some channel h

i and what is received is y i rather i equals to 1. It is sent through another channel h 2 and

what is received is y 2 and so on and so forth. And it is resent through m number of

channels you are receiving h m. 

So, it is the same signal s which is being sent over multiple paths or multiple received

signal is there belonging to the same information s. And that is what is captured over

here, that the receiver sees y i which is the received signal, i is the index which runs from

1 to m. So, one can translate this to receive antenna branches, transmit antenna branches,

time slots, frequency slots. So, that is why we are doing the general diversity discussion.

And we have E s over M, because E s over M is the transmitter symbol energy for each

diversity branch. That means, if the total energy is E s for s for each of the branch you

would  be  having E s  by M, E s  by  M,  E s  by M.  So,  that  the  total  energy at  the

transmitter is E s is not violated when comparing against a single link which has a total

power of E s. So, we are comparing two situations where the transmit power is divided

into M parts sent over parallel channels compared to the situation where you have E s

being sent over one single channel. Of course, h i is the channel trans function and noise

is the 0 means circular symmetric complex Gaussian noise, right, ok.



So, the received signal are combined, so since we have all these different receive signals

y 1, 2 up to y m, we would like to combine them and one of the process of combining

news as the MRC combining, maximal ratio combining. So assuming channel knowledge

available at the receiver you would take h i, conjugate it, and multiply by y i and add

over all the receiver branches. 

So, if you do that that is what is written in the expression next to it. What you are going

to get is, this is going to give you some over i, h i conjugate. If you expand y i, y i from

this you are going to get root over E s by M h i s plus n i and thereby if we look at the

desired term E s upon m goes outside the summation you are going to  get mod h i

squared times s, s will also be outside the summation and you are also going to get

summation h i conjugate times n i, yeah, so times n i, right. 

So, if we look at this term over here this is the desired signal with a certain weighted

power and you are adding it over 1 to M. A very gross view, if all of these values are 1, if

these are 1 then the total power is E s and then we have the total received power that is

the same as the SISO case. 

So, now, if you look at the post processing SNR from this expression, if you calculate the

post processing SNR you are going to get the sum over h i squared that is from here you

can clearly see that 1 upon M, 1 upon M over here some over h i squared is here, right.

So, these are the two things that you can clearly see which describes the received SNR.

And then we have the next term rho which is E s by N naught has given over there, right.

So that, so that we now have the entire expression of the SNR of the received signal. We

have seen how the signal is processed at the receiver as well. And from this one can

calculate the probability of error using the expression as given there, where any bar is the

number  of  nearest  neighbors  from  the  constellation.  So,  you  can  have  QPSK

constellation or a 16 QAM constellation, right. So, what you will be concerned is with

the  number  of  nearest  neighbors.  So,  in  this  case  these  are  the  number  of  nearest

neighbors.

And d min squared is the minimum distance of separation of constellation. So, if this is

the minimum distance of separation.  This is  not the minimum distance  these are  the

minimum distance of separation, so that is d min squared. Eta is the SNR of our concern.

So, eta is the one which is going to be there. So, we have all the terms now, and then we



can calculate the probability of error. So, now, one can clearly see that once again h i is a

random variable and therefore, as said earlier some of h i mod squared is also a random

variable which implies, but this is a constant term that is rho is a constant term that eta is

also a random variable. So, eta is a random variable which comes in here that in turn

means that probability of error is also a random variable. 

So, since if the probability of error is a random variable then there is hardly much that

you can do about it, except that you can provide the statistics and in this case what we

would be interested in is the average probability of error. So, let us look at calculating the

average probability of error for this particular situation. 

(Refer Slide Time: 15:11)

So, now to calculate the average probability of error we will use the Chernoff bound

where what we find over here it is in terms of Q function and Q function is in terms of

error function, so that is in the integral form. So, we use in the Chernoff bound and

provide this approximation for Q function. That is Q of x is less than or equal to e to the

power of minus x squared by 2 and x that is over here is all the terms that is over here

there is square root of eta d min squared by 2. So, x is equal to square root of eta d min

squared upon 2. So, that is what is x, ok. 

And so, we now have the approximation when it is applied, we are going to have any bar.

Instead of the Q function we have e to the power of minus this whole term squared. So,

that voltage squared means d min squared by if you look at the thing over here it is 2 so,



eta that that is what we had over here, eta is E s by n naught ok, and there is a row term

and we have 1 upon M mod h i squared.

So, from that we get this summation mod h i squared and 1 upon M and we have rho

which is E s by N naught and this 4 is because of 2 is getting multiplied with this 2, so

we have this 4 term. So, since we have now identified all the terms of this expression we

move on to calculate the average probability of error.

So, the average probability of symbol error is given by P e bar which is expectation of

probability of error. So, now, one would be able to connect to this expression and see that

we have  e  to  the  power  of  minus  nu  times  mod h  F  squared,  right.  So,  this  is  the

expression N e bar P e. So, from this we have to next go into expectation of N e bar e to

the power of minus nu mod h F squared because here h F squared is equal to sum over i

equals 1 to M mod h i squared, ok.

So, since we have that, so we can easily see that this entire summation is now replaced

by the term here that is below this entire summation is replaced by this term. And nu the

next parameter that we have is all the other terms rho d min squared upon 4 M, right. So,

now, you recollect that this is like the MGF of h, ok. So, the same expression that we had

seen earlier that is it looks like this expression. So, we use the result from this, so it is

basically the MGF of proven is norm squared of H. 

So, if we use the result, we will be applying it over here; that means, nu would come as it

is and lambda i of R, right. So, what we see that nu has come in its entirety, ok and when

we go back this determinant gets translated to this product term and in our case here, we

have only M we do not have an M T and M R, we only have M. So, you have an M term

over here N e bar comes out over there and now comes the lambda of R, lambda i of R

corresponding  to  this  is.  So,  R  is  the  expected  value  of  vec  of  h  times  vec  of  h

permission. 

If we assume that these branches that is what we are going to take R uncorrelated; that

means,  they  are  independent,  I  mean  if  we  take  independent  that  would  result  in

uncollected branches in that case, we will be getting the eigenvalues as 1 and hence you

have a 1 multiplied over here and the expression fits in. Now, if we let the SNR becomes

very very high, what we will find is that we can neglect this 1 with respect to this term

and you are going to get P bar which is the N e bar comes here and this term which is a



product of the terms inside this which has a constant term raised to the power of M and if

you bring them to the numerator you get a minus M. So, effectively what this means is

that if we take the log of it and then this minus M is going to come on the outside minus

M log of this  expression indicating this is the slope of the curve in the log scale of

probability of error.

So, in other words when we talk about the diversity gain; so, let us release erase all the

ink on this slide, yeah. So, when we talk about diversity gain what we mean is that the

exponent that is associated with the SNR term that is inside the bracket, ok. So, that is

the diversity gain.

(Refer Slide Time: 21:05)

So, now, let us look at a few other interesting outcomes of this expression. So, as we let

M tends to infinity; that means, as we let the order of diversity become higher and higher

and high, so we have described the order  of diversity  as  M. So, as we increase the

number of receive branches or number of independent transmission we can apply the

limit that 1 plus x upon n to the power of n can be approximated as an exponential. So, if

we apply it over here, right, we see M in the denominator and we also see M in the,

because this term is you can write it as 1 by 1 plus rho d min squared by 4 M, whole

raised to the power of M, right.

So, that  now is  what  we are approximating over here to get  an exponential.  So that

means, under M tends to infinity the error probability expression can be approximated to



an expression which looks like this which is the approximate simulator probability for an

AWGN link.  And what  we have from this result  is  that  as  we increase  the order  of

diversity towards infinity what we get is the symbol error rate which goes towards the

AWGN link. 

Now, a  careful  note  we  remember  we  have  not  increased  the  power  per  branch  of

diversity; So, per branch of diversity is E s by M and hence the total received power is E

s, it is not more than that. So, we are talking about the pure diversity, only diversity case.

So, if there are other gains the results would be different. So, when there is only diversity

with just by making by increasing diversity you can achieve the error probability of a

AWGN which is the best situation that one can think of, ok.

So, what we have over here is a set of results which indicates the curve that I am tracing

is for M equals to 1 in other words it is for the Rayleigh fading channel one can think of

this as the Rayleigh fading channel with a SISO link, ok. And then what we have is the

next line this is for M is equal to 2; that means, 2 order diversity and this curve is quite

visible. And the next one that we have over here is for M R equals to 4; that means, there

are 4 receive antennas it is slightly a different figure and then what we have over here is

the AWGN curve. So, this is the one for AWGN.

Now, why this crosses over? Because this particular result is for received diversity which

we are going to see shortly nut what we find is that M equals to 1 is there and AWGN is

over here. So, if we have pure diversity or curves are going to bend in this manner for M

equals to 2, 3, 4, 5, and as you increase slowly, they are going to merge with AWGN as

M tends towards infinity, ok.
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Moving  forward  so,  we  can  see  that  the  error  probability  average  error  probability

expression is written in this form where this M exponent of M indicates the order of

diversity is given over here and the multiplicative factor is the coding gain, right. So,

sorry this should be the coding gain not that one that is we need to correct this particular

part, ok. So, we will correct that particular this is a constant sorry, yeah. So, we have the

coding gain associated with it all, right.

So, what we see is that diversity gain effectively gives you a increase in the slope of the

curve and coding gain gives you a lateral shift of the error probability curve. So, any

expression which is bringing your increase in the slope it is the order of diversity and

that component which is giving you a lateral left shift is basically the coding gain part. 
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So, now we move on to the receive diversity. So, in case of receive diversity what we

mean is that there is a transmit antenna and there are receive antennas, ok. And these

signals are received whereas, only s is sent this is h 1, this is h 2, h 3 and so on up to h M

R and this is y 1 that is received, y 2, y 3 up to y M R that is received. And hence the

channel vector can be written as h 1, h 2 up to h M R transpose meaning you are having

h vector is equal to h 1, h 2 up to h M R like that, ok.

So, to maximize ok, the received signal again what do we have y 1 is equal to h 1 s plus

noise 1, y 2 is equal to h 2 s plus noise 2, like that y M R is equal to h M R s plus noise

M R, M R indicating the received branch number. And if you write these equations in a

vectorial form you are going to get y equals to h s plus n, these are all vectors of order M

R cross 1, right. So, that is written over here in this expression in a vectorial notation,

bold, small indicating vectors and this is the normalized transmit power. So, we have a

single transmit antenna hence the total transmit power through that antenna is E s which

is the square of which is the square of this particular term.

To maximize the received SNR, MRC combining issues maximal ratio combining which

is given by h Hermitian times h; that means, if you look at this h, h Hermitian would be h

1 conjugate, h 2 conjugate up to h M R conjugate. So, when we multiply this with this,

ok, what we are going to get is sum over h i mod squared i equals to 1 to M R which is

nothing but the Frobenius norm squared of h, and that is what we have got over here this



is the one that we had seen earlier also. So, the next expression at the receiver is this and

we also have h Hermitian multiplied by noise, so that term continues. So, from this we

have to calculate the probability of error. 

So,  if  we assume that  h  is  equal  to  h w, that  means  if  we assume a rich  scattering

environment in that case again, we will be able to calculate the probability of error as an

expression which is given over here, right. The difference what you see with respect to

the previous thing in the denominator term there was an additional term of M which is

missing over here. And the reason is at the transmitter now we have E s the total power

being transmitted from one of the branches the power that is received in this branch is

also E s times h 1 squared. 

The power that is received in this branch is this E s times h 3 squared, right. So, the

difference with the previous mechanism is that in the previous mechanism we said that

each of the branches receive a power which is E s upon M, but here it is receiving the E s

upon M multiplied by h s squared. So, that term is not over here the entire power E s is

received in each of the branch.

So, naturally one can think that we are actually increasing the total received power, and

that  is  pretty  obvious  because  you  are  having  more  number  of  antennas,  you  are

accumulating  more  amount  of  energy  that  is  a  natural  translation  compared  to  the

previous situation. So, hence that is the difference in this equation.

So, for high SNR that means, when rho is greater and greater than 1. The approximation;

that means, this is this term is neglected again just as we have done in the previous case

we get N e raised to the power of minus M R. So, the difference is we do not have the M

term over here, that term is missing compared to the previous term. So, diversity order is

M R because we have this thing and for h w that means, for especially white; the reason

we have talked about h w because we have again taken R is equal to identity matrix, ok. 

For  h  w expected  value  of  h  F squared  is  M R,  that  one  can  see.  If  one  takes  the

expectation over here, so basically go back and take the expectation over here that would

mean you are taking the expectation of you are taking the summation outside and h i

squared. So, we have seen earlier for h w it was mentioned that E of h i squared equals to

1. So, each of these elements are equal to 1 and hence this is equal to M because you



have M summations i equals 1 to M, M times 1 which is equal to M and here it is M R,

so you have M R, all right.

And the average SNR is expectation over eta. So, we have the expression of eta over

here ok that can be calculated directly from this. So, again since we have h F squared E

of h F squared is M R. So, we have M R times rho. So, which means that rho which is

equal to E s by N naught is now getting multiplied by M R; that means, the average

received signal power has increased with respect to noise power by a factor of M R and

hence there is an array gain is the thing that we add in this picture. 

There  is  an  array  gain  in  the  picture,  in  this  scenario  which  increases  the  average

received signal strength compared to the previous case which we were talking about

general order of diversity. So, we have two aspects now one is the array gain and the

other is the diversity gain. So, we have both these things when we are talking about

receiver diversity. 

We stop this particular lecture over here, and will continue with this general framework

of analysis for all the things in future.

Thank you.


