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Welcome to the lectures on Evolution of Air Interface towards 5G. So, we have been

discussing about the multiple antenna signalling schemes which enable us to have high

reliability  as  well  as  provide  better  spectral  efficiency.  And  we  are  looking  at  the

diversity  schemes,  we  have  looked  at  receive  diversity,  we  have  looked  at  transmit

diversity;  both  without  channel  state  information  at  the  transmitter  as  well  as  with

channel state information at the transmitter.

And then, we have started looking into the diversity schemes where both the transmitter

and the receiver has multiple antennas. The scheme we have been discussing is dominant

Eigen mode.
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In the previous lecture, we have described all the details procedures; where we said that

we  look  at  the  channel,  in  terms  of  its  eigen  value  decomposition,  whereby  at  the

transmitter side we pre code using V and we post process using U hermitian and since it

is a diversity mode that is only one value of signal is said or one signal is sent from the

diagonal eigenvalues or the diagonal singular values.



We take  the  one  corresponding to  the  maximum eigenvalue  for  this,  we choose the

vectors from U and V which correspond to the maximum eigenvalue and use them for

processing.  So,  that  particular  one is  used in  the  g whereas,  this  one  is  used  in  the

transmitter  so, the vectors are formed accordingly. So, at the transmitter  you have w,

which is defined below and at the receiver you process with g; so, g hermitian that is

what we said with U makes it one for this entry because that is what we are doing.

At the transmitter side, since we are sending only one value and there is only one column

of the vector being unitary. This also leads to one and hence, there is sigma max; so, the

received  signal  is  written  in  this  form where  n indicates  noise,  and sigma max.  So,

basically the SNR is equal to E s into sigma max squared upon En squared right; that is

what we have. So, sigma max squared is the one, which influences the SNR and sigma

max squared is equal to lambda max which is the maximum eigenvalue of HH hermitian

and hence SNR can be written as lambda max rho.
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So, let us look at the performance of such a scheme. So, this flat line is the one for the

flat  curve rather is the one for SISO link then, we have the result for two cross two

alamouti scheme and then finally, we have the result for dominant Eigen mode for a two

cross two system; so,  which clearly proves that,  this particular  mode of transmission

provides the best reliability in terms of error probability compared to other mechanisms

which use two cross two transmission receiving system.
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So, after studying the error probabilities, we now look at the signal correlation model;

that means we have talked about the channel correlation or spatial correlation and see

how does it affect the performance of the system. So, the average probability of error, we

have described this in all our previous discussions is given by particular expression over

here and what we see is that, there is the eigen values of R matrix which is present. So,

we have a two cross two system in this case, and the eigen values of R are determined or

are influenced by the correlation which is present in this R matrix.

In case of H w channel, we have stated that lambda i’s are equal to 1; whereas, in case of

correlated channel this will be not equal to 1 right so, let us see that. So, under high SNR

approx  assumption;  that  means,  when rho  is  significantly  high  under  that  case,  this

expression  can  become  N  e  as  we  see  over  here;  remains  as  it  is,  and  from  the

denominator term we can get this is we can get this out of course, it is kind of upper

bounded. So, this term comes over here for high SNR approximation. This is a constant

term; so, basically under high SNR, you will not get this product, i equals to 1 to 4 under

high SNR. This approximately equal to rho d min squared by 8 multiplied by since you

have the i over here lambda i of R ok.

So, that is; so, let us clean it and write it again. So, what we have there is a rho d min

squared upon 8 multiplied by lambda i of R and since, this is a constant term it can be

brought out; that is what has happened and in case of which is non identity of R. So,



what we will get is this raised to the power of rank of R because this product will only be

to the rank of R right otherwise the rest of them are 0. So, you are using only those

within the rank of it. 

So, for H equals to H w of course, we have said this is identity according to which we

have derived the earlier result and when R is fully correlated, R is all 1 matrix so; that

means, there is only one Eigen mode and hence, you do not get any diversity. So, to see

the effect of covariance or correlation,  which is non-identity; you take a situation for

simplicity that MR equals to M T equals to M. So, that the analysis becomes easier and

then, the eigen values of R; capital R matrix are represented by this expression which is

kind of standard based on what we have been doing.

And they are constrained to this right, that is the constraint that we bring into the system

meaning that the channel is restricted to a power of M right, channel does not provide

any extra power than M. And using the arithmetic  geometric  mean inequality, which

states that the arithmetic mean is greater than or equal to the geometric mean so, we

apply it over here. So, in this case we have sum of lambda i over M lambda i of R i

equals 1 to M is greater than or equal to product of lambda i i equals 1 to M raised to the

power of 1 by M.

So, from this, what we find that this term is equal to 1 and hence, what we have is the

product of eigen values is less than or equal to 1. So, that is the result that is shown here

right. So, now, what we see is that, the product of eigen values that is less than 1. So, we

have that term here which is 1 upon pi lambda i R i equals 1 to rank of R right. So, that is

what we have.

So, what it means is that, this denominator term because there is this inverse over here.

This term is greater than or equal to 1; that means, the whole ratio is less than or equal to

1 right. So, if the denominator is greater sorry, we wrote it wrong; this denominator is

less than or equal to 1; that means, this ratio is greater than or equal to 1 so; that means,

this multiplicative factor is something which is greater than or equal to unity, to be equal

to unity under the case of Hw channel.

So, this probability of error expression, which we are outlining with the box is multiplied

by a factor which is greater than 1 which in turn means that the average probability of

error increases if R is not an identity matrix. So, if R is not an identity matrix in that



case, we see that the error probability increases. So, to check the performance what we

see that, under no special diversity we get the SISO link, what we see over here is that,

this line that I am drawing is the one which is without any special diversity.

And  the  new  curve  that  I  am  tracing  is  the  one  which  is  with  IID;  that  means,

Independent  Identical  or  Identically  Independent  fading,  which  means  that  is

independent there is no correlation. So, because of a certain amount of correlation, what

we find is that the error probability curve has shifted upwards. So, there is an upward

shift  in the error probability curve; which I am tracing by the blue coloured ink and

thickening the line; so, that clearly shows that the error probability increases because of

correlation present.

So, correlation is not beneficial for error probability and whatever error probability one

receives under Hw channel becomes only worse; so that means, it increases when it is

not an Hw channel right. So, that is the important summary that we get in studying the

signal correlation. So, once we have discussed about the diversity.

(Refer Slide Time: 10:56)

It is very important we move into the next set of things that is the capacity, which is one

of the most interesting aspect why MIMO is so popular.

Of  course,  there  is  one  more  interesting  aspect  in  the  new generation  that  is  beam

forming,  But  the  biggest  advantage  that  MIMO  has  brought  in  over  the  last  few



generations of communication systems is enhancement is in capacity. And we are going

to  study  the  system  under  frequency  flat  fading  conditions;  this  is  what  we  have

mentioned earlier. So, also slow fading condition and all the MIMO assumptions that we

have made before. So, for a typical MIMO link a M T matrix and what we have is M R

cross M T matrix.

(Refer Slide Time: 11:41)

y is a MR cross one receive vector s is an M T 1 cross sorry M T cross1 signal vector ok.

So, what we have is the received signal in its linear equation from y vector is some

scaling H matrix s vector plus noise and it is also given that R ss is the receive or the

signal covariance matrix with a constraint that trace of R ss is equal to M T, this is an

important constraint. So, the total average transmitted energy constraint; that means, we

do not want to use excess transmit see, ss transmit power and what we see over here

from this part, is that the transmit power is equally divided amongst the M T transmit

antennas that is what we have over here.

And then, if we constrain that trace of R ss is equal to M T, then we will ensure that the

total  transmit power is restricted to Es; that means, we can compare the performance

with SISO link. So, the capacity of a MIMO channel is the one given by maxim, which

maximizes the mutual information between the received signal and the transmitted signal

over the distribution of the transmitted signals. So, f s is the probability distribution of

the vector s.



So, this is a standard result which we will accept, we cannot afford to go through the

derivation of this it is available in standard textbooks. So, now let us focus on this mutual

information expression. The expression for mutual information is given as the entropy or

the differential entropy of y because this is a continuous random variable, take away the

conditional differential entropy of H; that means, the differential entropy of y given s

right. So, that is the expansion of the mutual information.

And  we  have  also  defined  both  the  necessary  terms  s,  the  signal  s  and  noise  are

independent. This is one of the assumptions, it is kind of obvious, but still it is important

which leads to the condition that H of y given s because y is equal to h s plus n. So, we

could write that differential entropy of y given s is equal to that of h n right.

So, because we are saying that h s plus n conditioned on s this is what we are trying to

evaluate. Now, since n and s are independent here you do not have any uncertainty. So,

what is left with is uncertainty between h of n given s. So, h of n given s is basically Hof

n right that is what we have over here. Now, we get back to the original equation that is

this one. So, we have I s semicolon y, which is the mutual information between transmit

and  received  signal  can  be  expressed  as  H  y  minus  H  n,  where  H  indicates  the

differential entropy of the received signal and H n receives the differential entropy of

noise.

So, now, if we see the capacity expression, it is maximization of the mutual information

right; that means maximization of this term. If we look at the right hand side, we do not

have any control on the differential entropy of noise it is a natural event. So, we only

have  control  possible  control  over  differential  entropy  of  the  received  signal.  So,

therefore,  we  say  that  the  mutual  information  is  maximized  by  maximizing  the

differential entropy of the received signal because the received signal is connected or is

controllable through the transmitted signal s with this we proceed.
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So,  the  differential  entropy of  noise is  mentioned  over  here  which  is  fundamentally

controlled by N naught which is the noise power spectral density, IMR or you can say

that MR is another parameter, but we have seen that as MR increases, the received signal

to noise ratio increases. So, I would like to have MR as much as possible.

So,  therefore,  we  use  this  definition  of  differential  entropy  for  noise.  Similarly,  the

differential entropy for y can be written as given over here, where R yy is the term is the

covariance of the received signal that is  expectation of yy hermitian.  So, now let  us

expand yy hermitian over here that is, if you take y equals to square root of root over E s

by M T H S plus n. So, you want to multiply this by the hermitian of the same term. So,

you are going to get  noise hermitian;  you are going to  get  root  over E s by M T s

hermitian h hermitian. So, this product is what you are going to get.

So, if you expand the terms, you are going to get E s upon M T and then you are going to

get H S S hermitian H hermitian plus you are going to get n n hermitian and you are

going to get to the cross terms that is HS n and of course, the root part is there and the

root over s by n naught times H S sorry, S hermitian H hermitian noise and of course, the

hermitian.  So, these are  the terms that  you are going to get  and then,  you have this

expectation operator.

So, if you apply the expectation operator, it would not apply on this that is constant. H is

given that means, for a particular value of H. So, E would operate on SS hermitian and E



would operate on this as well as E would operate on this; so, E what we have stated that

S and n are independent. So, what we would get is E s times En, we have said that En is

0 and hence, this term would go to 0; the third the fourth term would also go to 0.

So, we are left  with the first and second term that is E s upon M T H. So, E of SS

hermitian we have defined earlier as Rss H hermitian plus E of nn hermitian. Again you

can write this as R nn which you can write it as I N naught of course IMR times N

naught. So, what you see over here this term is available here and this term is available

here. So, we have got the expression of R yy.

So, now if we have to maximize the differential entropy of y, what we are left with is; we

have, we are left with this expression where H is something, which is not in our control it

is from the channel. Noise is something which is not in our control, it is again from the

channel. The only thing that is left with us in our control is R ss; therefore, we can say

that as you are seeing that differential entropy is given as log determinant.

So, the log determinant of R yy so, what you have is log of determinant of R yy minus

log determinant of you can say R nn you say that way. So, you have determinant of R yy

upon determinant of R nn and a log outside that. So, if you expand this in terms of these

expressions you will end up in the expression over here, where there is IMR E s by M T

N naught H R ss H hermitian. 

And  therefore,  you  can  state  the  capacity  as  the  one,  which  maximizes  the  mutual

information that is maximizes this entire expression over trace of R ss or over R ss with

the constraint that trace of R ss is equal to M T. So that means, the capacity expression to

make it look clean, we have as given there so; that means, it maximizes this expression

just change the pen colour; it maximizes the expression over here. Of course, it is the log

determinant over R ss with a constraint that trace of R ss is equal to M T all right. So,

this is also called the error-free spectral efficiency. So, in all the analysis of MIMO that

we do here on will be using this particular expression for all our right.
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So, the first thing that we discuss is the situation, where channel state information is not

known to the transmitter; that means, CSI is not available at the transmitter right. So, if

CSI is  not available,  then that means,  at  the transmitter  side one, does not have any

information about the channel this is opaque, one does not know what is going on in the

channel. So, there is no specific information about the channel. So, the best that one can

do is set R ss equals to IMT right; that means, you just divide the power equally and you

have the; you have no other option to do and s is non-preferential; that means, you do not

have any partiality over the selection of s.
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So that means, you have already chosen a condition on R ss. If we go back; we find that

your trace has to be constraint to MT, but R ss can be of any structure. So, the particular

structure of R ss that we have identified is IMT. All the diagonals are one and the matrix

is of size M T cross M T or M T order identity matrix whose trace is definitely equal to

M T. 

So, now, we see that so, the constraint is gone. So, C is equal to log determinant of; so, in

this we had R ss and since, that is set equal to IMT it kind of vanishes from the equation

and the rest of the equation as it appears over here is the expression for the capacity

under  such situations.  What  we now do is  HH hermitian  is  a  symmetric  matrix  and

therefore, it can be factored into a structure like Q lambda Q hermitian, where Q are

orthogonal matrices and lambda contains the eigen values of HH hermitian right.

So, now we can write the capacity as log determinant; that means, we have not changed

this part  IMR also remains as it  is,  E s by M T N naught remains  as it  is,  and HH

hermitian gets replaced by QQ hermitian; Q lambda Q hermitian. Using an identity of

determinant and also using the condition that QQ hermitian equals to IMR; that means,

we will swap these two positions, you are going to get QQ hermitian and then, again you

are going to swap the positions. You are going to get Q hermitian Q that will be let equal

to identity.

So, what you will be getting is log determinant IMR E s by N naught, you will be left

with lambda. This entire matrix as you can see is a diagonal matrix because this is a

diagonal matrix with constant multiplicating terms. So, IMR is all ones and this matrix is

E s by M T N naught and lambda 1 lambda 2 so on. So, that is it so; that means, this

whole matrix is a diagonal matrix, whose determinant is a product of 1 plus E s by M T

N naught times lambda i, i equals to 1 to rank of R. So that means, the rank of R you can

set it equals to R. 

So, determinant of this and a log base 2 so determinant sorry, determinant gets changed

to a product right. So, this would translate to sum of log base 2 1 plus Es; well of course,

it is these things.
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So, that you get a cleaner place E s by M t N naught multiplied by lambda i and i goes

from 1 to r which is the rank of the matrix and this is the expression that you have over

here right. So, where r is the rank of the matrix and lambda i go up to r and E s by M T is

the transmit power right. So, what we see is that, if we look at this particular part; this

particular  part  is a SISO link that is; this  is  the capacity  of a SISO link and we are

summing  over  the  capacity  of  a  SISO  link  each  of  the  SISO  link  has  a  strength

corresponding to lambda i. So, that means, we can say that in this case it is the sum of

the capacities of r number of SISO links or SISO channels each with a power gain of

lambda i.

That means, the very important situation that we see is MIMO opens up multiple scalar

special data pipes or modes and this is exploited in providing high amount of spectral

efficiency. In SISO, you have only one data pipe where your SNR is inside the logarithm.

Here what we see is that this is broken down; the signal power is broken down and we

have added them; that means, the summation is outside the law so; that means, now the

power is distributed to different SISO links. Each SISO link having a certain amount of

gain and the transmitted power against each SISO link is an equal power that is E s by M

T. 

So, all one needs to do is to compare this and see whether it gives an increase in power

and the clear cut answer is this gives a much increase in signal in spectral efficiency.



There is much larger value of spectral efficiency than a SISO link, which has all the

power entrusted  inside the logarithm.  So, this  helps  us grow beyond the logarithmic

growth of spectral efficiency. 

So, this is a very important result that we have arrived at, we will continue to discuss the

capacity of MIMO channel, when channel is known to the transmitter as well as look at

the beam forming techniques  which help in  providing high capacity  for MIMO with

advantage of millimeter waves where you can provide much more focused beam in the

next lecture.

Thank you.


