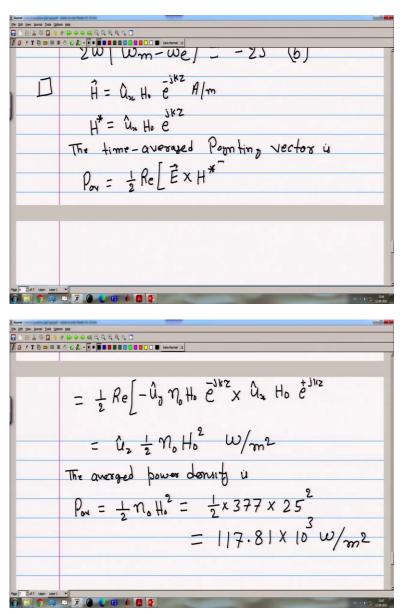
Advance Microwave Guided-Structure and Analysis Professor Bratin Ghosh Department of Electronic and Electrical Communication Engineering Indian Institute of Technology, Kharagpur Lecture 18 Time – Harmonic form of Maxwell's equations Tutorials

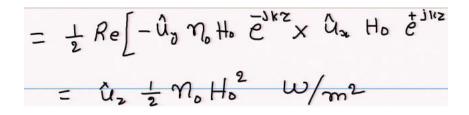
Welcome to the tutorial class. So, now, in this tutorial class, we will take the numerical problem on complex pointing vector.


(Refer Slide Time: 00:21)

The late top late the figure of the late the late the stored electric and magnetic energy densities separately.
7. Consider $\vec{E} = -\hat{u}_{,\eta}\eta_{0}H_{0}e^{-jkz}$ V/m and $\vec{H} = \hat{u}_{,x}H_{0}e^{-jkz}$ A/m , where $H_{0} = 25$ A/m and frequency 30 GHz. Propagation is in free space and z is the vertical direction. Assume lossless propagation (a) Calculate the time-averaged power density in the wave
30 GHz. Propagation is in free space and z is the vertical direction. Assume lossless propagation (a) Calculate the time-averaged power density in the wave
30 GHz. Propagation is in free space and z is the vertical direction. Assume lossless propagation (a) Calculate the time-averaged power density in the wave

So, this is the first problem.

- 7. Consider $\vec{E} = -\hat{u}_y \eta_0 H_0 e^{-jkz}$ V/m and $\vec{H} = \hat{u}_x H_0 e^{-jkz}$ A/m, where $H_0 = 25$ A/m and frequency 30 GHz. Propagation is in free space and z is the vertical direction. Assume lossless propagation (a) Calculate the time-averaged power density in the wave
- (b) Calculate the stored electric and magnetic energy densities separately.


So, this is a first problem calculate the time average power density in the wave in the next part calculate the stored electric and magnetic energy density separately. So, let us do the solution. (Refer Slide Time: 01:45)

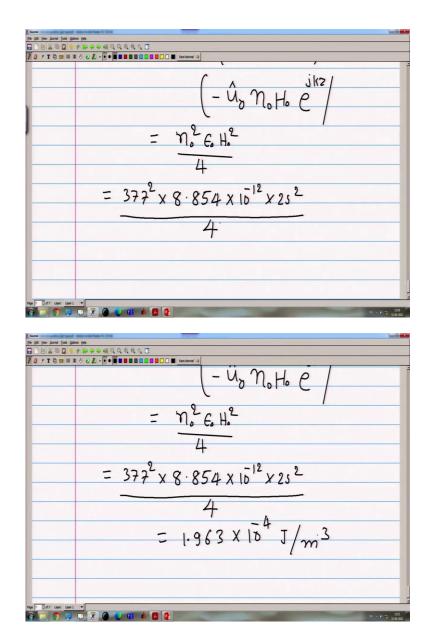
So, here it is given.

H = Qar H. e A/m H* = û, Ho e The time-averaged Poonting vector is Por = = Re[EXH*]

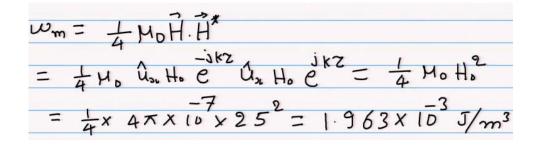
So, E is given in the question, so above equation becomes:

Time average power density is

The averaged power density is


$$P_{ov} = \pm n_{o} H_{o}^{2} = \pm 2 \times 377 \times 25^{2}$$

$$= 117.81 \times 10^{3} W/m^{2}$$


because in the question it is given, it is a loss less propagation and progression in the free space. So, free space wave impedance will be 377.

(Refer Slide Time: 05:56)

E ¥ © Q • ℓ ⊨ + + + 4 Q Q Q Q Q Q / T © = = # 4 0 £ • • • ■ ■ ■ ■ ■ ■ ■ □ ■ □ ■ • (6) Wm = 4 MoH.H* $= \frac{1}{4} H_0 \hat{U}_0 H_0 \hat{e} \hat{U}_x H_0 \hat{e} \hat{e} \frac{jkz}{4} = \frac{1}{4} H_0 H_0^2$ $= \frac{-7}{4} \times 4\pi \times 10 \times 25^{2} = 1.963 \times 10^{-3} \text{ J/m}^{3}$ $u_e = \frac{1}{4} \in \tilde{E} \tilde{E}^* = \frac{1}{4} - \hat{u}_o \eta_o H_o \frac{-jkz}{4}$

In the next part, stored electric and magnetic energy density are given by:

$$w_{e} = \frac{1}{4} \in \vec{E} \vec{E}^{*} = \frac{c}{4} \left(-\hat{u}_{o} n_{o} H_{o} \vec{E}^{jkz} \right)$$

$$\left(-\hat{u}_{o} n_{o} H_{o} e^{jkz} \right)$$

$$= \frac{n_{o}^{2} c_{o} H_{o}^{2}}{4}$$

Substituting the values, we get:

$$\frac{377^{2} \times 8 \cdot 854 \times 10^{12} \times 2s^{2}}{4}$$

= 1.963 × 10⁴ J/m³

So, this is the solution.

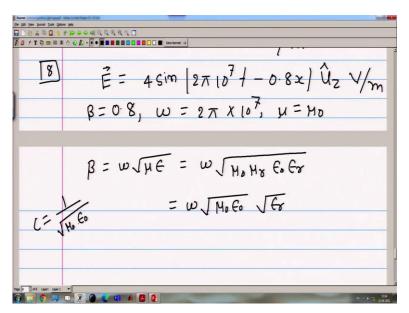
(Refer Slide Time: 09:35)

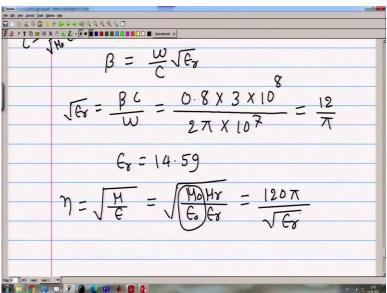
2 numerical questions, ppt type.pdf - Adobe Acrobet Reader DC (32 bit) dit View Sign Window Help		6
te Tools week 2 numerical q., ×		0
☆ @ @ Q	⊕⊕_ <u>*</u> /≈ ▶ ⊕ ⊖ ⊝ <u>∞ -</u> <u>K</u> - ∓ <i>□ ℓ ৫</i> ⊕	e.
8. In a nonmagne	tic medium	
	$\vec{E} = 4\sin(2\pi \times 10^7 t - 0.8x)\hat{u}$, V/m	
Find		
(a) ε_{r}, η		
(b) The time-ave	rage power carried by the wave	
	er crossing 100 cm ² of plane $2x + y = 5$	

We can go to the next problem,

8. In a nonmagnetic medium

$$\vec{E} = 4\sin(2\pi \times 10^7 t - 0.8x)\hat{u}_z \text{ V/m}$$


Find


(a) ε_r, η

(b) The time-average power carried by the wave

(c) The total power crossing 100 cm² of plane 2x + y = 5

(Refer Slide Time: 10:25)

$$\frac{1}{2} = \frac{12}{2} =$$

Here E field is given,

$$\vec{E} = 4 \sin \left[2\pi 10^7 t - 0.8x \right] \hat{U}_z V/m$$

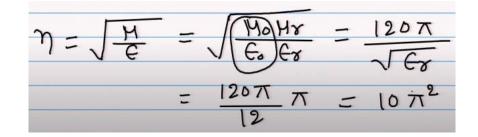
So, from this we can compare sine omega t minus beta x. So, after comparing

$$\beta = 0.8, W = 2\pi X 10^{4}, \mu = H0$$

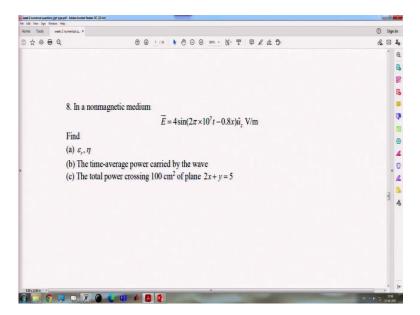
So, this is the omega and beta and because this is a non-magnetic medium, So,

$$\beta = \omega \sqrt{\mu} \in = \omega \sqrt{H_0 H_0 \in G_0}$$

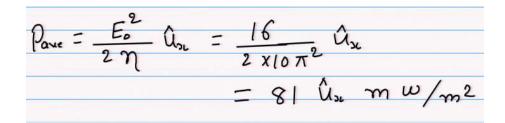
$$L^{-} = \omega \sqrt{H_0 E_0} \sqrt{E_0}$$


$$\beta = \frac{\omega}{C} \sqrt{E_0}$$

$$\sqrt{E_0} = \frac{\beta C}{\omega} = \frac{0.8 \times 3 \times 10^0}{2\pi \times 10^7} = \frac{12}{\pi}$$

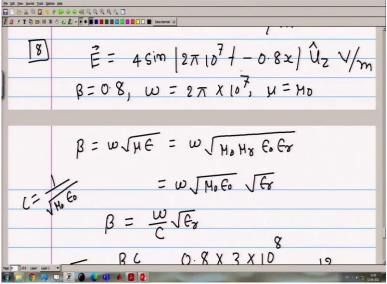

On solving we get:

$$E_{r} = 14.59$$


after getting this value, we can find out the wave impedance as:

(Refer Slide Time: 14:42)

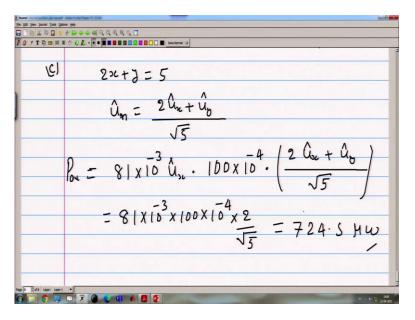
Next part, time average power carried by the wave we can find out by:

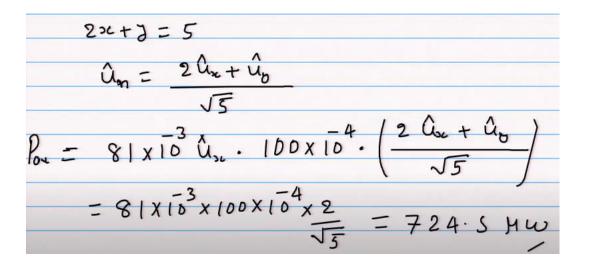

(Refer Slide Time: 15:00)

$$\frac{W}{H} = \frac{W}{H} = \frac{W}{H} = \frac{120 \pi}{\sqrt{6s}} = \frac{120 \pi}{\sqrt{6s}}$$

$$\frac{W}{6} = \frac{120 \pi}{\sqrt{2}} \pi = 10 \pi^{2}$$

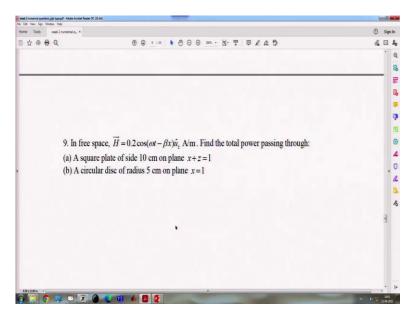
$$\frac{120 \pi}{\sqrt{2}} \pi = \frac{10 \pi^{2} }{\sqrt{2}}$$


$$\frac{120 \pi}{\sqrt{2}} \pi = \frac{16}{2 \pi} \frac{U_{xx}}{\sqrt{2}}$$


(Refer Slide Time: 16:14)

fait View Sign Win	uppt type.pdf - Adobe Acrobet Reader DC (33-bit) dow Help			G	6
me Tools	week 2 numerical q ×		0	s	iign li
☆ @ 🖶	Q	⊕ ⊕ <u>?</u> /≈ ▶ ⊕ ⊖ ⊙ <u>∞∞ -</u> ∺- ∓ <i>■ ℓ</i> ৫ ⊕	e.	2 6	3
				1	
	8. In a nonmagr	netic medium			
	c	$\vec{E} = 4\sin(2\pi \times 10^7 t - 0.8x)\hat{u}, \text{ V/m}$			1
	Find				
					1
	(a) ε_r, η				
		erage power carried by the wave			
	(c) The total por	wer crossing 100 cm ² of plane $2x + y = 5$			1
					P
					1
50 x 11.00 in 4			= + 4 %	×.	5.57

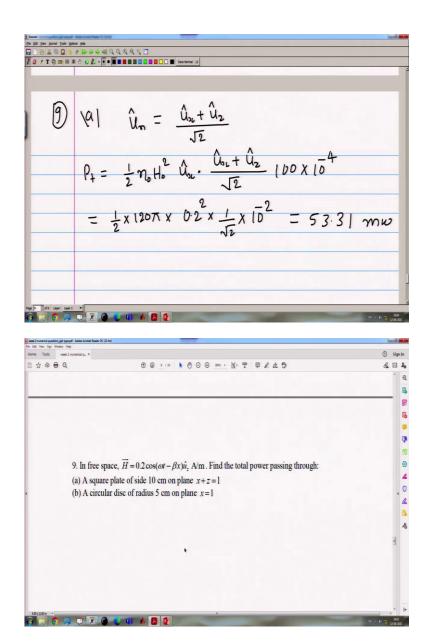
(Refer Slide Time: 16:24)



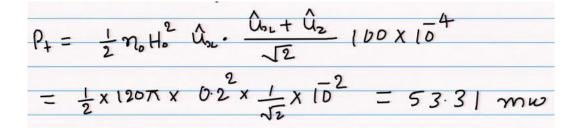
Next part is total power crossing the crossing 100 a square centimetre of a plane 2x plus y equal to 5.

So, this will come 724.5 Macro Watt. So, this is the answer for the last part, we can go to the next problem.

(Refer Slide Time: 18:48)

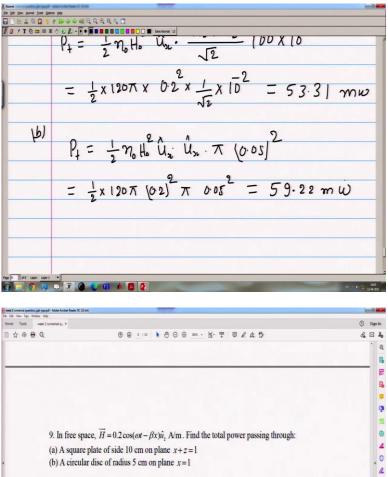


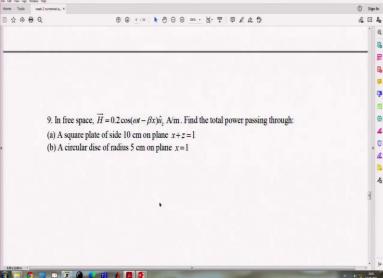
9. In free space, H = 0.2 cos(ωt - βx)û_z A/m. Find the total power passing through:
(a) A square plate of side 10 cm on plane x+z=1
(b) A circular disc of radius 5 cm on plane x=1

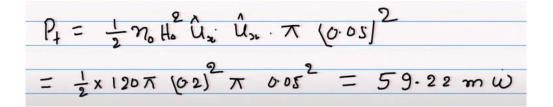

We need to find out the total power passing through a square plate of side, this is a square plate of side 10 centimetre that means area will be 10 X 10 centimetre square, on the plan x + z = 1. So, first we have to find out the unit vector on this plane. So, unit vector on this plane will be.

$$\hat{u}_n = \frac{\hat{u}_{s_L} + \hat{u}_2}{\sqrt{2}}$$

(Refer Slide Time: 19:35)




And the total power passing through the square plate of side 10 centimetre:


So, this will come after calculation 53.31 milli watt. So, this is the answer for the first part.

(Refer Slide Time: 22:24)

Similarly, for the next part in the b part, in the b part it is given, a circular disc of radius 5 centimetre on the plane x = 1. so, on the plane x = 1, we have to find out Pt.

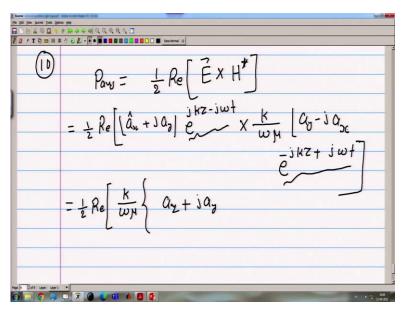
after simplification it will come 59.22 milli watt. So, this is the answer for the b part.

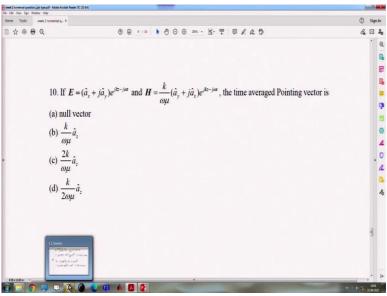
(Refer Slide Time: 24:15)

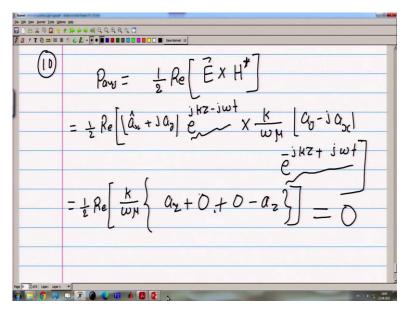
week 2 numerical question + Edit View Sign Wi	s, ppt type.pdf - Adobe Acrobet Reader DC (32-bit)	The second secon		9		1
Home Tools	week 2 numerical q., ×		0	5	Sign	in
	Q	© @ º /» 🕨 🖑 🖯 🖯 🗹 🔤 🕹 🗜 🗮 🖗 🖉 🎸	é	2 0	3	1
				1	-	
		k				
	10. If $E = (\hat{a}_x + \hat{a}_y)$	$(\hat{a}_y)e^{jkz-j\omega t}$ and $H = \frac{k}{\omega\mu}(\hat{a}_y + j\hat{a}_x)e^{jkz-j\omega t}$, the time averaged Poin	ting vector is			
		ωμ				
	(a) null vector					
	(b) $\frac{k}{\omega\mu}\hat{a}_z$					
	ωμ					
	(c) $\frac{2k}{\omega\mu}\hat{a}_z$ (d) $\frac{k}{2\omega\mu}\hat{a}_z$				4	
	ωμ					
	(d) $\frac{k}{\hat{a}}$					
	(α) 2ωμ					
				1	1	
	Constant Con					
	To part to part to part to read to part to read					
150+1120 m ·						
				÷.	506	

So, in the next problem it is given:

10. If
$$E = (\hat{a}_x + j\hat{a}_y)e^{jkz-j\omega t}$$
 and $H = \frac{k}{\omega\mu}(\hat{a}_y + j\hat{a}_x)e^{jkz-j\omega t}$, the time averaged Pointing vector is
(a) null vector
(b) $\frac{k}{\omega\mu}\hat{a}_z$
(c) $\frac{2k}{\omega\mu}\hat{a}_z$
(d) $\frac{k}{2\omega\mu}\hat{a}_z$


So, here options are given, so I have to find out time average pointing vector. So, time average pointing vector is given as:


$$P_{avy} = \frac{1}{2} Re \left[\vec{E} \times \vec{H}^{*} \right]$$


$$= \frac{1}{2} Re \left[\left[\hat{a}_{x} + J a_{z} \right] e^{jkz - jwt} \times \frac{k}{w\mu} \left[a_{z} - J a_{z} \right] e^{jkz + jwt} \right]$$

$$= \frac{1}{2} Re \left[\frac{k}{w\mu} \left\{ a_{z} + O + O - a_{z} \right\} \right] = O$$

(Refer Slide Time: 24:53)

So, option will be a null vector.

(Refer Slide Time: 28:20)

ek 2 numerical questions got type pdf - Adobe Acco LAR View Sont Window Hale	tat Fender DC (32-bit)		00	-
me Tools week 2 numerical q	x	0	Sig	jn
☆ @ @ Q	⊕ ⊕ =/= ► ⊕ ⊖ ⊕ <u>205 -</u> K- ┯ ⊨ ℓ & ⊕	e		
			*	
11. T	he H field (in A/m) of a plane wave propagating in free space is given by			
	$5\sqrt{3}$,			
	$H = \hat{a}_x \frac{5\sqrt{3}}{\eta_0} \cos\left(\omega t - \beta z\right) + \hat{a}_y \frac{5}{\eta_0} \sin\left(\omega t - \beta z + \frac{\pi}{2}\right)$			
That	ime average power flow density in watts is $\frac{7}{10}$			
(a) $\frac{1}{1}$	<u>/o</u>			
(b) 1	<u></u>			
1	70			
(c) 5	$\partial \eta_0^2$			
. 5	0			
(d) $\frac{5}{n}$				
	0			
	1			
			1	
91110 m			. ·	i

In the neck problem

11. The H field (in A/m) of a plane wave propagating in free space is given by

$$\boldsymbol{H} = \hat{a}_{x} \frac{5\sqrt{3}}{\eta_{0}} \cos\left(\omega t - \beta z\right) + \hat{a}_{y} \frac{5}{\eta_{0}} \sin\left(\omega t - \beta z + \frac{\pi}{2}\right)$$

The time average power flow density in watts is

(a)
$$\frac{\eta_0}{100}$$

(b) $\frac{100}{\eta_0}$
(c) $50\eta_0^2$

$$(d) - \eta_0$$

(Refer Slide Time: 28:36)

$$P = \frac{1}{2} \frac{n}{n_0} \frac{1}{n_0} \frac{$$

$$P = \frac{1}{2} \frac{\gamma_{0}}{\gamma_{0}} \times \frac{100}{\gamma_{0}} = \frac{50}{\gamma_{0}} \frac{100}{\gamma_{0}} = \frac{10}{\gamma_{0}}$$

$$P = \frac{1}{2} \frac{\gamma_{0}}{\gamma_{0}} \times \frac{100}{\gamma_{0}} = \frac{50}{\gamma_{0}} \frac{100}{\gamma_{0}} = \frac{10}{\gamma_{0}}$$

averk 2 numerical questions, ppt type.pdf - Adobe Acrobet Reader DC (32-bit)			00
får Edit View Sign Window Help			
Home Tools week 2 numerical q., X		0	Sign Ir
□ ☆ ⊕ ⊕ Q	⊕ ⊕ _= /= k ⊕ ⊖ ⊕ <u>_== +</u> k ₹ ₽ ₽ ℓ ৫ ₿	e.	
			• 1
	$ \begin{array}{c} \textcircled{\begin{tabular}{lllllllllllllllllllllllllllllllllll$		
11. The H field (in A	/m) of a plane wave propagating in free space is given by		
	5 5 (-)		
$H = \hat{a}$	$\frac{5\sqrt{5}}{\cos(\omega t - \beta z)} + \hat{a} \frac{5}{\sin(\omega t - \beta z + \pi)}$		
1	$\eta_0 = (1 - \gamma - $		6
• •	er now density in waits is		1
(a) $\frac{\eta_0}{100}$			
(1) 100			
100			•
(b) —			4
η_0			
(c) $50\eta_0^2$			
(d) $\frac{50}{50}$			
$(u) = \frac{n}{n}$			
10			
			3
839+1129 m 4			

Given:

$$\vec{H} = \hat{\alpha}_{sc} \frac{5\sqrt{3}}{N_0} \cos\left[\omega t - \beta z\right] + \hat{\alpha}_0 \frac{5}{N_0} \sin\left[\omega t - \beta z + \frac{\pi}{2}\right]$$

So time average power flow in watt in free space :

$$P = \frac{E_o^2}{2\eta_o}, \quad E_o = \eta_o H_o$$
$$= \frac{1}{2} \eta_o H_o^2$$

So, after simplification we get:

$$H_{0} = \sqrt{\left[\frac{5\sqrt{3}}{m_{0}}\right]^{2} + \frac{15}{m_{0}}\right]^{2}}$$
$$= \frac{1}{n_{0}}\sqrt{7s + 2s} = \frac{10}{n_{0}}$$
$$P = \frac{1}{2}\gamma_{0} \times \frac{100}{n_{0}^{2}} = \frac{50}{n_{0}}$$
 with

So, we get correct answer as 50 upon eta naught so, option will be d. So, like this, all these problems can be solved. Thank you.