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Analysis of Guided Structures (cont.) 

Welcome to this session of the lecture on the dielectric slab which is a continuation of the 

previous lecture. In the last lecture we discussed the electric and magnetic fields inside the 

dielectric region for the TM even mode. We will continue from there and we will find out the 

electric and magnetic fields in the air region for the TM even mode, for subsequent matching of 

the electric and magnetic fields across the dielectric air interface, in order to evaluate the 

propagation constant of the TM even mode. 
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So, in the air region, electric field Ez is given by  

 



we call this equation-24. Similarly, we can find out Hy, the tangential magnetic field at the in the 

air region. 
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So, Hy is given by  

 

we call this equation-25. So, now we equate the fields at x equal to a/2. So, at x equal to a a/2, 

we have Edz equal to Eaz; so the electric field is not in the dielectric, must be equal to the electric 

field Ez in the air region at x equal to a/2. So, therefore we can write expanding Edz and Eaz.  

(Refer Slide Time: 04:59) 



 

 

so this is equation-26.  

At x equal to a/2 we also have the equality of the tangential magnetic field components Hy. So, 

we write at x equal to a/2, we have  

 

let us call this equation-27.  

So, we have equated the tangential electric field Ez at x equal to a/2; and the tangential magnetic 

field Hy at x equal to a/2. In order to drive out these unknown constants A and B; we will again 

take the ratio between 26 and 27. 
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So, taking the ratio of 26 and 27, we obtain  

 

call this equation-28, in order to use the form of the function, the generic form of the function x 

cot x.  

So, this is the characteristic equation for determining the kz and cut-off frequencies of the even 

TM modes; because u and v can be expressed in terms of kz from the separation equation. So, 

equation-28 can be recast totally in terms of kz replacing u and v; that will yield a single equation 

in kz, from which kz can be obtained. 

So, this is the characteristic equation for determining the kz, and the cut-off frequencies for the 

TM even modes. So, there is a complete duality between the TM and TE modes of the slab 



waveguide. So, the characteristic equations of the TE modes are just dual to those of the TM 

modes.  
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We can write down the characteristic equation for the TE modes with odd psi, which can be 

evaluated in exactly the same manner as we did for the TM modes with odd psi. So, for the TE 

modes with odd psi, we have  

 

we marked this as equation-29.  

Compare with 19, which is the characteristic equation for the odd TM modes. So, we see that εd 

is replaced by µd and ε0 by µ0. So, for the TE modes with even psi, after performing exactly the 

same analysis as we did for the TM modes with even psi, we will obtain the characteristic 

equation. 



 

so this is equation-30.  

Again compare this with equation-28; so, for the even TM modes. We see that εd is replaced by 

mu d, and ε0 by µ0.  

We should also note that odd functions generating the TE modes, or the odd potential functions 

generating the TE modes, are given by the same equations as the TM modes; which are 

equations 5 and 6. And similarly the even functions generating the TE modes, are given by 

exactly the same equations from which the TM even modes are obtained. 

The same potential functions from which the TM even modes are obtained; and those are 

equations 20 and 21. So, the fields are obtained from the psi by equations, which are dual to 

equation-4. So, for the TE modes, the fields are obtained from the psi by the equations which are 

exactly dual to equations 4; that are relevant for the TM modes.  
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So, for the TE modes, the fields are obtained from the psi functions as  

 

let us call these sets of equations as 31.  

Now, because the dielectric guide is an open structure, the concept of cut-off frequency for such 

guides is somewhat different compared to metallic guides; where the fields do not escape from 

inside the metal. So, what is happening here? So, we have the fields which are sinusoidally or co-

sinusoidally dependent on the x coordinate inside the dielectric slab. 

And which are exponentially decaying above and below the dielectric slab. So, under such a 

condition the guidance takes place inside the slab. So, we say that above the cut-off frequency, 

the dielectric guide propagates a mode unattenuated; that means kz which is the propagation 

constant along the z direction is real. 
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So, we write above the cut-off frequency kz is real. However, below the cut-off frequency below 

the cut-off frequency, kz becomes equal to beta minus j alpha. But, since the dielectric is loss-

free, this attenuation of the wave which is the complex part of kz is due to the radiation of energy 

in the air region as the wave propagates inside the dielectric.  

So, as the wave propagates inside the dielectric is it progressively loses energy in the air region. 

This condition is what characterizes the wave below cut-off. So, this is saliently different from 

metallic waveguide as we saw, where there is no radiation of electromagnetic waves; because the 

waves are only confined between the metallic walls of the guide. So, therefore the dielectric 

guides operating below cut-off can be used as antennas; because they are radiating energy to free 

space.  

And therefore, I can make the same dielectric strip or dielectric guide operate as a guided wave 

medium with kz real above cut-off; which are called essentially called surface waves inside the 

dielectric. Or, I can make it work as an antenna, so that these waves have complex propagation 

constant. And therefore, as they proceed or as they progress inside the dielectric slab, they 

progressively lose energy in the air region. 

This in fact, marks the below cut-off region of the dielectric slab, where the dielectric slab can be 

used as an antenna. It is very important to understand, therefore that a lossless dielectric slab can 



have an imaginary propagation constant. This is a very important thing to appreciate that the 

dielectric strip though perfectly assume lossless can have an imaginary propagation constant.  

And this imaginary propagation constant is due to the radiation of electromagnetic waves in the 

air region, as the wave the TE or TM mode progresses inside the dielectric slab. Now, the 

question is what demarcates below cut-off and above cut-off? So, the phase constant of an 

unattenuated mode.  

So, if the mode is unattenuated, which means that kz is real for this condition which is an 

unattenuated mode. It lies between the phase constant of the dielectric and that of the air region. 

So, the propagation constant or phase constant of an unattenuated mode will lie between the 

intrinsic phase constants of the dielectric and the air region.  

That is we will have k0 less than kz less than kd, 32. We go back to equation number-7; we see 

that kz is less than kd. Now, if kz is greater than k0, then v is real. So, therefore if v is real, then 

the distribution of fields in the air region is exponentially decaying; or it is of the exponentially 

decaying time. So, have this very clear picture in mind that when a wave propagates inside the 

dielectric slab above cut-off. Or, when the dielectric slab is being operated above cut-off, the 

waves in the air region are of the exponentially decaying type, while kz is real. This condition is 

mathematically the same as this condition, that kz will lie between the intrinsic phase constant in 

the dielectric region, which is kd.  

And the intrinsic phase constant in the air region, which is k0. So, the lowest frequency for which 

the unattenuated propagation exists is called the cutoff frequency. This we have borrowed from 

the concept of cut-off frequencies in the waveguide. So, the lowest frequency for which kz is 

real; we call it the cut-off frequency. So, therefore, cut-off occurs as kz tends to 0. 
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Cut-off occurs for the dielectric slab as kz tends to k0. Because if kz becomes lesser than k0, then 

v or the Eigen number or the Eigen value in the air region is going to be complex; so, kz is lesser 

than k0, v or the Eigen number in the air region will become complex. And therefore, we will 

have propagation in the air region not evanescence in the air region; not exponentially decaying 

waves in the air region.  

We will start to have propagation in the air region; because we will turn out to be complex. So, it 

will be instead of e to the power minus vx, e to the minus j v prime x; so, there will be 

propagation in the air region. So, therefore, the dielectric slab is going to radiate in the air region. 

Therefore, its energy will reduce as it propagates inside the lossless dielectric strip.  

This condition or this behavior of the dielectric slab will occur below cutoff, when the dielectric 

strip will therefore behave like an antenna. So, kz approaching k0 is the same as v approaching 0. 

And therefore, the cutoff frequencies can be obtained from the characteristic equations by using 

or by setting  



 

So, this constitutes the cut-off frequency of the dielectric slab guide. And when we do that when 

we substitute them in the characteristic equations, we obtained the above equation. So, we can 

look at equation number-19, and substitute u.  

Since, v tends to 0, the right-hand side of 19 tends to 0. And because, so this equation can be 

obtained from equation-19; when we look at equation-19, we substitute v equal to 0. So, the 

right-hand side of equation-19 becomes equal to 0, and we obtain the above condition. Similarly, 

we can look at equation number-28, and from there we will obtain the condition. So, this is for 

the odd TM mode, this is for the even TM mode; and the same equation holds good for the TE 

modes; because the characteristic equations are the same; only change is replacing epsilon by 

mu. So, these apply to both applies to both the TE and TM modes. 
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So, these equations are satisfied  
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The corresponding cut-off wavelength lambda c becomes equal to  

 

we call this expression or the cut-off wavelength lambda c as equation-34.  

So, the modes are ordered as TM n, the modes are TM n and TE n; so these are the modes in the 

dielectric slab; or called also the dielectric slab modes. So, we should also note that the fc or the 



cut-off frequency corresponding to the TE0 mode and the TM0 modes. So, for the TE0 and the 

TM0 modes for n equal to 0; the corresponding cut-off frequency is 0.  

So, the TE0 modes and the TM0 modes in the slab possess a zero cut-off frequency; that is the 

propagate right from dc. So, this concludes the session on the evaluation of propagation constant 

inside substrate based structures, or the dielectric slab. So, we now have a much more useful a 

physically meaningful insight for the design of substrate based circuits and antennas.  

We have a clear understanding of what is meant by propagation in a dielectrics slab; what is 

meant by cut-off in a dielectric slab? What happens in propagation? What happens in cut-off? 

What are the relevant mathematical parameters characterizing the propagation region and the 

cut-off region, which is invaluable for the understanding of any kind of substrate based circuits? 

Thank for your attention.  


