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Cylindrical Wave Functions (Contd.) 

So, let us continue in this lecture for the cylindrical wave functions. And in this part we are going 

to see how the appropriate choice of the magnetic vector potential and the electric vector 

potential in terms of the z directed  function or the substitutions A equals to zu  leads to TM to 

z mode in the cylindrical coordinate system. And what are the field distributions for those modes? 

And how the substitution F equal to zu  leads to the TE to z modes? And what is the field 

distribution, electrical and magnetic field distributions, mathematical expressions for such fields?  

This is going to directly lead to the solution of the circular waveguide where we will find that the 

modes inside the circular waveguide are indeed the TE to z and the TM to z types because of the 

very simple reason that those fields which we are going to find now, they are going to satisfy the 

boundary conditions at the conducting walls of the circular waveguide. So, therefore 

conceptually the treatment is not different from the rectangular waveguide. It is only the 

mathematical language that changes.  

So, the whole cylindrical coordinate circular waveguide system proceeds in exactly the same 

way except the difference in the mathematical language. So, we are just now going to start our 

exploration of what are the fields of A equal to zu  and F equal to zu . Let us go to the lecture. 
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So, let us suppose that, first of all that A equal zu . We call this equation 18. We know 

H A . And A  in the cylindrical coordinate system is 
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Because  has only z component, not new to us; similar treatment we had done in the 

rectangular coordinate system. And this is equal to
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. So, that 
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given by 0. That we can easily deduce from the above equation. So, we call this equation or sets 

of equation for the magnetic fields, equation number 19.  
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Similarly, for the electric field we encountered this equation in the rectangular coordinate system, 

 
1

E j A A
j




     . And now we are going to express the same thing in the cylindrical 

wave system, or a cylindrical coordinate system. So, we call this equation 20.  
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Now grad of V in the cylindrical coordinate system where V is the scalar is given 

by
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. So now, from equation 20, we can write the electric field as 
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, where k square is given by 2   which is 

well-known.  
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Therefore, we can collect together the terms for the electric field from this expression. So, E  

will be equal to
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So, these constitute electric fields for the TM to z mode.  
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Why is the mode TM to z now? Because back from equation number 19, we see that the z 

directed magnetic field is 0. So, the mode is TM to z. So, similar to the rectangular waveguide or 

the rectangular coordinate system, z- directed magnetic vector potential will give rise to the TM 

to z mode in the cylindrical coordinate system as well. 

So, let us explore now what will happen for the z- directed electric vector potential, whether it 

gives rise to the TE to z mode as it does for the rectangular coordinate system. So, for the TE to z, 

let F equal to uz psi. So, E is given by F , and that is given by
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So therefore, E  is given by
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from here itself that the mode is TE because the Ez, the z component of electric field is 0. Call 

this equation number 22.  
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Then we go ahead with the magnetic field. H is equal to  
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So now, from 23 we can compute H as
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So, from here we can find out all the magnetic field components which is H  equal 

to
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magnetic field components in the cylindrical wave system or the cylindrical coordinate system 

for F is equal to zu . That is all, this equation 24.  

And an arbitrary field, one which has both Ez and an Hz can be expressed as a superimposition 

of the TE to z and the TM to z fields just like in the rectangular coordinate system. So, any 

arbitrary field can be expressed as a summation over TE to z and TM to z fields.  

So, this completes the derivation of the TE to z and the TM to z electric and magnetic fields in 

the cylindrical coordinate system. And the simple conclusion is that A equal to zu  leads to the 

TM to z modes and as in the rectangular waveguide and the substitution F equal to zu  gives rise 

to or yields the TE to z modes. Also, similar to the rectangular coordinate system. So, let us stop 

here. 


