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Lecture - 11
Dominant Pole Compensation

In this lecture we will again continue our study into the stability of multiple feedback

systems. So we have so far been looking at  3 pole systems,  so in  other words your

forward block A of s has 3 poles so we will represent it as A naught by 1 plus s by omega

p the  whole  cubed  and as  before  we will  assume that  the  that  the  reverse  path  the

feedback path is frequency independent.

(Refer Slide Time: 00:29)

Now, if you write down the expression for the closed loop gain of the system, in terms of

A of s we will then use that to study the stability of the system, so let us expand out the

denominator because we are going to need to do this 1 plus 3 s by omega p plus 3 s

squared by omega p squared plus omega p cubed. 

Now if you look at the expression for the closed loop gain of the system as a function of

frequency, so you will of course have the ideal gain of the feedback system which is 1

over f times the low frequency loop gain which is a naught f by 1 plus a naught f times

the frequency response, so for the frequency response you will see 1 over 1 plus 3 s by

omega p plus 3 s squared by omega p squared plus I am sorry I made a small mistake



here they should be s cubed by omega p cubed, plus s cubed by omega p cubed into 1 by

1 plus A naught f,  so this is the expression for the closed loop gain of the feedback

system. So, now I am going to represent this portion as sum D of s the denominator

polynomial and what I need to do I need to find out the roots of D of s equal to 0 if I do

this will give me the expression for the roots of the closed loop system and I know that if

the closed loop system has roots in the right half plane especially complex conjugate

roots I know that the system is going to be unstable. So, let us now take this denominator

polynomial and find out it is roots.

(Refer Slide Time: 03:31)

So, now the expanded expression for D of s is 1 plus 3 s by omega p into 1 plus A naught

f plus 3 s squared by omega p squared into 1 plus A naught f plus s cubed by omega p

cubed into 1 plus A naught f and I am going to set that to 0 to find out it is roots. Now

this is of course the same as finding out the roots of. So, now I am going to make a small

substitution to make things easier I am going to say some variable x is s by omega p, so I

find out the roots of D of x and then I substitute x equals s by omega p. 

So, the roots of D of x equal to 0 is the same as finding it is the same as finding the roots

of 1 plus sorry 3 x by 1 plus A naught f plus 3 x squared by 1 plus A naught f plus x

cubed by 1 plus A naught f equal to 0 and now I can multiply throughout by 1 plus A

naught f, so 1 plus A naught f plus 3 x plus 3 x squared plus x cubed is equal to 0.

 (Refer Slide Time: 05:45)



This again can be written in this form 1 plus x the whole cubed is equal to minus A

naught f, now it is clear that we want to find out the solutions of this particular cubic

equation. And of course the solution is clearly given by x is equal to minus 1 minus 1

plus the cube root of minus A naught f and of course the cube root of minus A naught of f

has three solutions and each of these solutions will give you three roots x 1, x 2 and x 3. 

For example, so let A naught f be equal to 0 right, so I have no loop gain in the system so

this means there are three coincident roots at minus 1 that is x 1 is equal to x 2 is equal to

x 3 which is equal to minus 1, so what happens if I try out a different value let us try out

A naught f equals 8, if the total loop gain in the system is equal to 8 then the system has

three roots x 1, x 2, x 3 so I need to find out the roots of minus one plus the cubeth root

of minus 8.

So, this gives me three solutions x 1 is minus 1 minus 2, x 2 is minus 1 minus 2 e power j

2 pi by 3 and the third solution x 3 is minus 1 minus 2 a power minus j 2 pi by 3, so these

are basically three solutions one of them happens to be real the other two solutions are

complex conjugates of each other.
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So, now I am going to show the progression of the roots in the in an x y plot, so this is

the real axis and this is the imaginary axis and remember when A naught f was 0 you had

three coincident poles at minus 1 comma 0 and when the loop gain increases to 8 the

poles of course when the loop gain increases on 0 one pole always moves along the x

axis, the other two poles split apart into a pair of complex conjugate poles. 
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Now let us calculate the value of the poles at minus 2 for a at a naught f equal to 8, if you

look at this particular value minus 1 minus j 2 pi by 3 so this gives you a value of x 1



equals minus 3, x 2 equals ah in fact, so this gives you three values x equals minus 3 and

plus or minus j root 3. And therefore you find that at a value of A naught f these three

poles now are such that the first pole is at minus 3 comma 0 so this is at A naught equal

to f so they move in this way and the other two poles have move to plus or minus j root

3, and it should be clear now clear to you now that if the value of A naught f increases

more than 8, then they the poles move into the right half plane and therefore the system

will become unstable, the closed loop feedback system becomes unstable.

So,  now  you  may  notice  that  we  had  actually  seen  the  first  order  system  is

unconditionally stable, the second order system is stable but when you try to achieve

large loop gains the system has very high quality factor or very low damping factor and

the closed loop response even though unconditionally stable can have a lot of ringing,

what we find is for a third order system even for a value of only 8 the system becomes is

barely stable and if A naught f increases if the loop gain increases beyond 8 the system

definitely becomes unstable.

So, now this completely goes against what we have been trying to do so far, so we need

to find a way to fix this, so obviously we can see that the third order system is already

unstable at A naught f equal to 8 of a fourth order system would be worse. Now let us

now regroup again so to kind of give a recap of what we have been studying so far, so we

want to increase loop gain so that the study state error of the system is extremely small,

so that it is as close to 1 over f is possible which is the ideal gain.

Now, it  turns  that  the  first  order  system is  unconditionally  stable  so  I  will  kind  of

summarize it here. So, the first order system is unconditionally stable but low gain, so it

has low gain and which is an undesirable quantity and it is unconditionally stable, which

is the desirable quantity that we will like. If you look at a second order system so it has

moderate  gain  and  it  is  technically  stable  but  because  the  phase  reaches  minus  180

degrees only at infinite frequency but you can have ringing, and the third order system

can have large gain but unstable for that large gain, so our strategy is going to be to build

a higher order system which is stable. 
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Now which the system that  we know that  is  unconditionally  stable  is  the first  order

system, so our strategy is to make the third order system which is the system with largest

gain so look like first order system, so our strategy is going to be to make the third order

system look like a first order system so this pretty much summarizes our strategy, so

what I have done here is I have drawn out what happens when you take a third order

system and make it look like a first order system. 

So, let us look quickly look at the details of this, so your original system is completely

shown in black so it  has a forward block whose transfer function is A of s equals A

naught by 1 plus s by omega p the whole cubed, so therefore the if you draw the bode

plots of the system the magnitude stays at 20 log A naught f till it hits the three poles that

omega p.

Once it does so, the gain starts dropping linearly in the bode plot at the rate of minus 60

dB per decade and the unity gain frequency of the system can be determined for this

particular transfer forward block transfer function, if you look at the phase similarly the

phase stays at 0 for a very long time now at approximately one tenth the pole frequency

omega p the phase of the loop gain starts changing and at omega p the actual value of the

loop gain will be three times minus 45 degrees or minus 135 degrees.

If  you go to very large frequencies you will  get minus 90 degrees from each of the

omega p poles and the final phase would be minus 270 degrees. Now what can we say



about the stability of the system clearly as I have drawn it the system has a gain I am

going to show this in maybe light blue, the system has a gain which is larger than 1 when

the phase hits minus 180 degrees. So, clearly when the phase hits one eighty degrees the

system has a gain which is much larger than 1 and of course the system has a strong

potential for instability. Now, let us see how you would make this look like a first order

system as for a stability is concerned, so now I am going to take the same third order

system.
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.

I am going to add a 4th pole omega d with the condition that omega d is much smaller

than omega p and so the transfer function looks like this, now for this system I am going

to draw the bode plot in red and as you can see the loop gain magnitudes stays at 20 log

A naught f till it hits the first pole omega d, what happens subsequently at that point the

gain starts dropping with a single pole response or at minus 20 dB per decade and for a

well define system it should cross omega u such that it is still it still looks like a first

order system. If you look at the phase response of course once it hits all the other three

omega p the phase goes that minus 80 dB per decade so let me show that the phase

response here the phase goes at minus 80 dB per decade at that at that point.

Once it hits the other three poles, now what happens to the phase response the phase

again starts at 0 but at around one tenth of omega d the phase starts reducing at omega d

you will get the a phase of minus 45 degrees from the omega d pole and once you go far



enough beyond omega d the phase will asymptotically approach minus 90 degrees and it

will stay at ninety degrees for a wide range of frequencies. Now at a certain point very

close to one tenth omega p the phase of the three poles at omega p will start effecting the

overall phase of the new system and eventually the at very high frequencies much larger

than omega p, the total phase would be equal to that of a four pole system and therefore

minus 360 degrees.

Now, most importantly I am going to show the when the phase crosses 180 degrees, so

that happens at this point and as you can see when the phase crosses 180 degrees the gain

the loop gain the magnitude of loop gain has already become smaller than 1, alternatively

you can see that when the when the loop gain has actually hit 0 dB or a value of 1 the

phase has not hit minus 180 degrees, so clearly the system is technically stable as I have

drawn it, so now obviously if you increase the value of omega d the point where the

phase is 180 degrees could occur when the magnitude of the loop gain is less than 1 as

the designer it is our job to actually choose omega d appropriately. Now, having said this

let us quickly look at two definitions of stability before we do the look at the analytical

behavior. 
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Now the analytical behavior of the system can be represented as a measure of sorry the

measure of stability of the system can be represented in two ways or rather I will call it

measures of stability, the first measure of stability that we will learn is what is called



phase margin of an abbreviated as P M and this is defined as the difference between the

actual angle of the loop gain and the point at which the system becomes unstable which

is minus 180 degrees when the magnitude of the loop gain is equal to 1, so in other

words you find out the frequency at which the magnitude of loop gain becomes equal to

1 and ideally your phase should not have already reached minus 180 degrees and the

difference between the actual phase and this minus 180 degrees is the phase margin, in

other words it can be written in this form 180 degrees plus the actual angle, for example

if the actual angle were minus 135 degrees the if the system is said to have a phase

margin of 45 degrees.

Now, the other measure of stability is what is called gain margin I am going to abbreviate

it using G M, so this is defined as the difference between the actual between the point

where between the point where the loop gain goes to 1 which is 0 dB minus the actual

magnitude of the loop gain which is evaluated when the angle of the loop gain is minus

180 degrees, in other words ideally the loop gain should be less than 1 when the angle is

180 degrees so that the system is stable. So, this is clearly the negative of the magnitude

of the loop gain when the angle is minus 180 degrees and similarly this is calculated

when the loop gain is 1. So, these are two measures common commonly used measures

of  stability  of  the  system and you will  find  that  the  phase  margin  is  a  much  more

commonly used measure of stability for various reasons.

 Now let us go back to this particular system that we have seen we have seen now that

addition of this pole omega d makes the system highly stable and this omega d is called

the dominant pole of the system. Omega d is called the dominant pole because for a large

range of frequencies it makes the system look like a first order system and this particular

way of making the system stable is called frequency compensation and more specifically

this particular way of compensating is called dominant pole compensation this is called

dominant pole compensation this is one of the most commonly used ways to stabilize the

feedback  system.  Now  you  will  also  find  that  you  need  to  understand  the  system

analytically so let us do that now let us find out how you would figure out where to place

the dominant pole.
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So, I am going to start off with the same third order system that I have started off with

which is sum A naught by 1 plus s by omega p the whole cubed and what I am going to

do I am going to assume that there is some feedback factor f so that the low frequency

loop gain is A naught f as before I now need to find out where to place omega d the way I

am going to do it now as an example is I am going to place omega d at a frequency at

some frequency much smaller than omega p and figure out what the how large A naught f

can be so that the system is stable.

So, let us quickly look at this, so now I am going to transform this into a dominant pole

compensated system so into 1 plus s by omega d into 1 plus s by omega p the whole

cubed, when we get to the details of the circuits we will understand how to make how to

put this dominant pole into the system for now at the system level we need to understand

what is happening. And what I am going to say is let  us try placing omega d much

smaller than omega p, so let us say omega d is going to be 1000th of omega p.

Let us say I am going to add a dominant pole which is at 1000 the frequency of the

original 3 poles. So, now what is going to happen I can now write the expression for the

loop gain of the system which is simply A naught f by 1 plus 1000 s by omega p which is

the dominant pole and into 1 plus s by omega p the whole cubed and I am going to make

this equal to minus 1 so in other words I need to apply a condition on the magnitude and

a condition on the phase.



So, let us do both of those and of course I am first going to start off putting a condition

on the phase because then I can find out omega as a function of omega p in other words I

can find out the frequency at which the phase hits minus 180 degrees as a function of

omega p so let us do that first. So, the first condition I am applying is that the angle of

the phase response is minus 180 degrees, so this is the first constraint. 

So this constraint tells me that I need to calculate the phase of the loop gain so of course

the numerator gives me 0 phase and now I have to subtract the phase of the denominator

from this, so the first dominant pole gives me a phase which is tan inverse 1000 omega

by omega p minus now the three poles at omega p give me a phase of minus 3 tan

inverse omega by omega p and I am going to equate this to minus 180 degrees. 
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Now we can make some certain common sense approximations obviously the if the if the

unity gain frequency were much larger  than omega p or rather  omega d what  is  the

scenario then in this case if under this condition the phase of omega d, the phase due to

omega d at omega u so I will So phi at omega u due to omega d would be minus 90

degrees, because at frequencies much larger than the pole frequency the pole offers a

phase of minus 90 degrees please remember you can correspond this to the plot that we

have drawn earlier ah if omega u is much larger than omega d then the phase due to

omega d would be minus 90 degrees. So which means you are equation now becomes 0

minus 90 degrees minus 3 tan inverse omega by omega p is equal to minus 180 degrees



or 3 tan inverse omega by omega p is equal to minus 90 degrees sorry plus 90 degrees or

tan inverse omega by omega p should be equal to 30 degrees, now this is now clear what

we are saying is that the each of the poles at omega p has to give you a phase of 30

degrees so that the overall  minus 30 degrees so that the overall  phases minus ninety

degrees from the 3 poles the other minus ninety degrees comes from omega d as pointed

out here, so that the total phases 180 degrees. Now this means that the contribution of

each pole gives you 30 degrees right so what is the value of omega by omega p which is

clearly tan 30 degrees, so we now have found out the frequency at which the phase hits

minus 180 degrees this happens at omega by omega p by root 3.

What do we do next,  we go back and plug this in plug in this relationship in to the

magnitude condition and find out the maximum allowable value of A naught f which will

give you the limit  of stability when rather the upper limit  of the loop gain when the

system is marginally stable so we are going to find that out so let us go plug this back in

into this equation and this gives you.
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So, the magnitude of A naught f by 1 plus j 1000 by root 3 into 1 plus 1 by sorry 1 plus j

by root 3 the whole cubed this should be equal to 1, and this of course tells you that this

gives you the condition that A naught f equals approximately 890 and now you can see

the power of this dominant pole compensation, if you had taken your original 3 pole

system the upper limit of A naught f barely gave you two complex conjugate poles on the



on the y axis, if you try to increase a naught f beyond 8 the system would have become

unstable right.

Now, by adding the dominant pole the value of loop gain can now be much larger so you

can see it is almost two orders of magnitude larger than the original value. So, this is a

large loop gain compared to the original case, now what is this mean a let us try to get a

little bit more insight if you tried to decrease the value of A naught f you can may push

omega d a little bit further out. Similarly if you want more loop gain if you want to

increase A naught f further you have to pull in omega d even lower than this particular

value of 1 over 1000 of omega p. 

What  is  the disadvantage  of  doing this,  the disadvantage  is  you are constraining  the

bandwidth of the system, now disadvantage of course I should said I said disadvantage

but very often you have no choice, so the nu omega u is much smaller but now when you

this is  the open loop omega u of the loop gain if once you place it  in feedback the

bandwidth can be much higher where you know depending on the actual gain that you

need from the system. 


