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Review of electromagnetic principles, we will continue with that chapter. Previously we have

seen details of Maxwell’s equation module 1A and 1B. In this module that is module number

2, we will look into uniform plane waves in different media.
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First we will define what is meant by uniform plane waves and what is meant by transverse

electromagnetic waves or TEM waves. We will derive the wave equation, then after that we

will look into wave propagation in pure dielectric that is lossless media, then in a lossy media

which has got a finite conductivity, we will also introduce the concept of skin depth which

will be used several times in the remaining chapters.

(Refer Slide Time: 1:19)

What is meant by plane waves? For this look at the sketch over here in Cartesian coordinates.

Imagine  that  you  have  a  wave  that  is  travelling  in  the  positive  z-axis  direction  for

convenience. Then a plane perpendicular to this direction lies in the XY plane. Imagine a

sheet lying along XY plane and if all your electric field vectors and magnetic field vectors are

lying in this plane then we call it as a plane wave. So in a plane wave, electric and magnetic

field vectors are in a plane perpendicular to the direction of propagation so in this case in the

XY plane.

Now what is meant by a uniform plane wave? Imagine that the E vector and the H vector has

the same value independent of the position in its XY plane that is everywhere along the XY

plane, then we call it as uniform plane wave so it is uniform all along this plane. Now what is

meant  by transverse electromagnetic  waves?  So uniform plane wave is  a  special  case of

waves called transverse electromagnetic waves. It only means that E vector and H vector lies

in a plane that is perpendicular to the direction of propagation.  Now another example of

transverse electromagnetic waves is a transmission line that is two parallel wires or one wire

above ground plane, we will consider transmission lines in later modules.
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Now just from this figure we can derive some properties for this electric and magnetic field

vectors say for example,  E and H vector do not have any component in the direction of

propagation and they are denoted with respect to X and Y because it is uniform. Now we

write these properties in terms of equation in the next slide. 

(Refer Slide Time: 3:59)

From the above figure we can say that rate of change of E with respect to X is 0, being

uniform field, and E is aligned to the X direction by choice without any loss of generality and

H is aligned to Y direction without any loss of generality, so the other components are all 0.

Now, let us take the curl of the vector E and applying the Faraday’s law that we have seen

before.  We take the differential  form or the point form of the Faraday’s law. If you now

perform your vector algebra, the curl of E is defined by this matrix, here there are the unit

vectors with differential symbols corresponding to X, Y and Z and these are the components

of E vector. 

So since by our choice of coordinate system and without any loss of generality, E is aligned

with X direction, EY and EZ are 0. Similarly, rate of change of E vector with respect to X and

with respect to Y are also 0, so this curl can be simplified by this equation over here that is

curl of E equals rate of change of magnetic flux density with respect to time is simplified like

this. When S vector is moving forward in the z-direction, vector E can change.
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∇× Ē=−μ
∂ H̄
∂t

⇒
∂ Ex (z , t)

∂ z
ŷ=−μ

∂ H y (z , t)
∂ t

ŷ

Now let us consider the time harmonic variation, so this is the function of space and time so

if the time variation is in the harmonic manner, in the sinusoidal manner, which in frequency

domain is represented by E to the power J Omega t, where Omega is the angular frequency

and F with tilde on top this is the phaser and that phaser can be written as magnitude of the

phasor and this is angle with respect to your reference so we can write it like this also F0

angle Theta. Now if you substitute this into this equation and similarly same equation can be

written for magnetic field also in phaser form then E to the power J Omega t in both sides

will cancel each other and what is remaining is this equation, rate of change of E with respect

to Z equal to - J Omega, J Omega is coming from the differentiation of this, J Omega Mu H

so this is one of the equations.

For harmonic variation

F ( z ,t )=
~
F (z)e j ωt

Where phasor ~
F (z)=

=

d
~
Ex (z)
dz

=− j ωμ~H y (z )

Now similarly, from the differential form of ampere’s law states that curl of magnetic field

intensity vector is equal to the sum of conduction current and displacement current. So this

can be simplified taking the curl here, instead of E it will be H in this form and in phaser

notation we can simplify it in this way, where d by dt of E vector will yield J Omega here.

Now, from this equation and this equation combined that is differentiating with respect to Z

and substituting in each other we get the wave equation total like this, so 2nd derivative of E

with aspect to Z equal J Omega Mu Sigma + J Omega Epsilon multiplied by E.
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So this value J Omega Mu times Sigma + J Omega Epsilon, so this is the function of material

property in terms of conductivity and electric permittivity and the frequency Omega, so this

factor is called as propagation constant square so Gamma square, so similarly with the H field

also we can write a wave equation.

d
~
H y (z )
dz

=−(σ+ jωμ )~Ex (z)

d2~E x (z)

d z2 = j ωμ ( σ+ jωε )~Ex ( z )=γ 2~Ex ( z ) ; Also ,
d2~H y (z)

d z2 =γ 2~H y ( z )

(Refer Slide Time: 9:47)

So our propagation constant  gamma  is  square root  of J Omega Mu (Sigma + J Omega

Epsilon) that is, it is the property of frequency and the property of the material through which

it is propagating. Now this can be separated into real and imaginary parts, and let us say

Alpha is real part and Beta is imaginary part. Now the real part is called that attenuation

constant and this imaginary part Beta is called the phase constant. Now both Alpha and Beta

has unit per meter however, just to distinguish between imaginary and real part we call Alpha

that is attenuation part as neper per meter and Beta as radians per meter. Now a general
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Propagation constant γ=√ jωμ(σ+ jωε )=α + jβ  



solution for wave equation in terms of travelling waves in forward direction is given by E as

a function of Z and t equals some magnitude value E to the power - Gamma Z times E to the

power J Omega t.

A  general  solution  for  wave  equation  in  terms  of  travelling  waves  in
forward direction,

E x ( z ,t )=Ex 0 e−γz e j ωt
=Ex 0 e−αz e j(ωt− βz) ; Also H y ( z , t )=H y 0e

−γz e j ωt

So Gamma can be expressed in terms of Alpha and Beta so if you expand it, this part is the

attenuation part E raised to - Alpha Z then you have a phase part also similarly, H can also be

written in this manner. Now since it has got the real part and the imaginary part, if you try to

measure the field with an instrument, what we measure is the real part of the field that is the

physical real part of the field and that part is given by E x(z , t)real=E xo e−αz cos (ωt−βz ) .

So that is the real part of the field. You can see that amplitude is varying, not only that there is

a periodicity in the amplitude, not only that wave is going through the medium, it is also

decreasing exponentially by this factor.

Now, the wave has a velocity into the medium and that velocity we can derive by tracking the
points where (ωt−βz ) becomes constant, or you can say that okay you pick up a fix point
along  the  time  varying  and  attenuating  wave,  so  that  condition  is  rate  of  change  of
(ωt−βz ) with respect to time is equal to 0 and from this we get dz/dt if you differentiate

both terms with respect to time, so that is the phase velocity or  v. From this we get it as
ω /β , beta is the phase constant. So this may not be speed of light because it depends upon

the property of the medium, and in vacuum or air of course will be the speed of light.
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Now we can define another property of the medium, intrinsic impedance of the medium. We

have seen previously the expressions for E and H, and in general we know that impedance is

expressed as Ex/Hy, but even without using this you can manipulate wave equation and find

that  H is  given by Ex/Zm and  Zm equal  to  
jωμ
γ

,  so  that  is  equal  to  √ jωμ
σ+ jωε

.  So

impedance of the medium is given by the frequency as well as in properties of the medium,

there  are  3  basic  properties  for  a  medium;  one  is  the  conductivity  Sigma,  the  electric

permittivity Epsilon and the magnetic permeability Mu, so from this we get the impedance of

the medium.

E x ( z ,t )=Ex 0 e−γz e j ωt

H y ( z , t )=H y 0e
−γz e j ωt

=
Ex 0

Zm

e−γze jωt

Zm=
jωμ
γ

=√ jωμ
σ+ jωε

(Refer Slide Time: 15:56)
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Now let us go to the lossless media that is a good dielectric, where conductivity is equal to 0.

Previously we have seen propagation constant γ which can be expressed as α + jβ. From this

equation we can solve for  α and β, you know you can remove this square root by squaring

both sides and then equating all  the real terms to the left  and right,  and equating all  the

imaginary terms to the left and right, you will get for α this particular expression, that is the

attenuation constant and for β you will get this expression that is propagation constant. You

can try it at home and see that this is correct. Now α and β differs in this term over here, here

it is - and there it is +.

Now  let  us  consider  the  lossless  media  where  conductivity  sigma  is  equal  to  0  so  we

substitute this value into this, immediately we see that this is (alpha) equal to 0 but this (beta)

will not be equal to 0 so this will be square root of 1 + 1, so basically 1 and here there is a

square root. So this square root of 2 and this cancels and you get Beta equal to Omega square

root of Mu Epsilon which is nothing but 2π /λ . Now intrinsic impedance becomes square

root of Mu by Epsilon that you can see by substituting Sigma = 0 in this special form intrinsic

impedance of the medium that we have seen before. Now phase velocity V = Omega by Beta
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that is equal to substituting for Beta, one by square root of Mu Epsilon which is nothing but

frequency times lambda. When σ=0,

These equations are strictly true for sigma equal to 0 but we can use these equations with

very good approximation for any dielectric when we have /<<1. So when / is far

less than 1, you get something like 0.002 and still these expressions can be valid. So we can

say that when conduction current is represented by conductivity   and   is displacement

current.  So  when  conduction  current  is  dominant  over  the  displacement  current  or

/<<1, these equations are true we can say like that.
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Now consider lossy media where Sigma is not equal to 0, now there is a special case of lossy

media  and  the  good  conductors  like  metals  like  copper,  iron  or  aluminium,  where  the

conduction current is far dominant over the displacement current, displacement current is

negligible in those and conduction current is very high so />>1.  Usually this limit is

taken as /σ<<1/100.

(Refer Slide Time: 21:07)

So in that case if you go to the previous slide (expressions for α∧β¿ this under brackets is

far greater than 1, so 1 can be neglected, so you can simplify as /. So in that case you

will see that both are Alpha, Beta are equal because whatever is in this bracket is simplified

as square root of /.
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So you see that Alpha equal to Beta and which is supposed to be equal to square root of

Omega Mu Sigma by 2. And intrinsic impedance of the medium is given by square root of J

Omega Mu by Sigma or Omega Mu by Sigma square root of J, in terms of phaser notation we

can  take  it  as  angle  45  degree  so  J  represents  angle  90  degree,  this  is  called  surface

impedance in the case of very good conductors or metals because the field is not very much

penetrating into the metal, so this is also called surface impedance or intrinsic impedance of

the medium. And phase velocity V is equal to square root of 2 Omega by Mu Sigma. You can

see that phase velocity is depending upon the frequency, it changes with frequency and it

depends upon the magnetic permeability as well as conductivity of the medium, now we can

look into the consequences of this, before that we define skin depth.
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So what is skin depth? You know that waves are penetrating into the metals but it will be

attenuating very fast, so skin depth δ is defined as a distance on which the amplitude

E0e-z of the wave is decreasing by 1/e where e is the base of the natural logarithm. So

1 by e is about 0.37 so this is an exponentially changing right, suppose E 0 we take it as 1

here, now this is exponentially decreasing so this is the surface of the metal let us say and this

is the depth of the metal. So as we go into the metal, when this wave amplitude becomes 0.37

or 1 over e, we call this depth as 1 skin depth. So you will see that skin depth is equal to

square root of 2 by Omega Mu Sigma, you can verify it yourself and that is equal to ω is 2πf

so square root of 1 by Pi F Mu Si.

So this is a function of frequency, as the frequency is increasing you see that skin depth is

decreasing and it also depends upon Mu and Sigma. And similarly we can verify that inside

the metal speed of the wave V equal to 2 Pi F Sigma. At home you can substitute in your

equation and verify all these expressions, so wavelength λ is nothing but 2πδ that is skin

depth. So intrinsic impedance or surface impedance or characteristic impedance, you can call

by any of these 3 names. So intrinsic impedance of metal is equals √ 2πfμ
σ

.
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Zm=√ 2πfμ
σ
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So let us do some calculation, so I have done all this calculation and represented it in the

form of  a  table  here  and want  to  points  out  some of  the  properties.  Let  us  first  define

conductivity,  permeability,  now  conductivity  of  copper  is  very  high  perhaps  one  of  the

highest in the common kind of metals that are in use in electrical engineering, this is 5.8 into

10 to  the power 7 Siemens per  meter. So usually the materials  that  we use in  electrical

engineering are copper, aluminium, iron or some combinations of that so among them this

has got the highest conductivity so we take it as a reference for easiness. So conductivity can

be represented as reference conductivity, times conductivity of copper. And permeability we

know  of  a  media  is  reference  permeability  or  relative  permeability  multiplied  by  the

permeability of vacuum or air, and permeability of air is defined as 4π ×10-7  H/m

Free space value of V or speed of light is 3 into 10 to the power 8 meter per second, so we

can easily see that the wavelength at 1 megahertz is nothing but 300 meter that is 3 into 10 to

the power 8 meters per second divided by frequency 10 to the power of 6, so you get 300

meters so wavelength at 1 gigahertz in free space or air is 0.3 meter. Similarly we can say that

free space impedance is equal to 377 ohms. Now you remember these reference values, so in

free space you know wavelength is of the order of meters we can say or fraction of a meter

and impedance is of the order of 100 of Ohms, 377 Ohms.

Now let us consider this in medium copper and iron; so for copper relative conductivity is 1

and  it  is  a  non-magnetic  material  so  µr  =  1.  In  iron  in  this  particular  iron  let  say  the

conductivity is already 10 percent of copper so 0.1, so the 0.5 10 to the power 7 Siemens per
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meter iron is magnetic so relative permeability let us say it is 500. So here we have this skin

depth velocity in the medium, wavelength in the medium and the impedance in the medium,

and here we have frequency 50, 1, 1 megahertz, 1 gigahertz, same thing for iron. Now the

skin depth you can see this is 10 to the power – 3 meter, so this is basically in terms of

millimetre, at 50Hz the wave will penetrate into iron and within 9.35 millimetre it is reduced

in value by e that is 0.37 of the original value so that is my skin depth and it is travelling at a

velocity of 2.936 meters per second, so you see how different the velocity wave is in metal.

Here in free space it is 3 into 10 to the power 8 meters per second that is 300 million meters

per second and here it just 2.936 meters per second extremely slow. And what about lambda?

Lambda is 0.059 meters only, in free space what will be lambda? At 50 hertz it will be several

thousands of kilometres, so several thousands of kilometres versus fraction of a meter that is

5.9 centimetres wavelength in metal that  is  in copper  and the intrinsic  impedance of the

medium here is 2.61 milli Ohms, in free space it is 377 Ohms. So you see that properties of

waves in metals are very different from that in air or free space so this is very important in

EMC studies, this distinction.

(Refer Slide Time: 32:58)

Now as the frequency is increasing, we have seen over here what happened to skin depth,

skin depth should be decreasing, impedance is increasing then the velocity is increasing and

the wavelength is decreasing, so let us see here kilohertz.
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This is decreasing from 50 hertz, velocity is increasing, lambda has decreased further, the

impedance  has  also  decreased  further, so  similarly you  can  calculate  1 megahertz  and 1

gigahertz.  Now  for  iron  with  10  percent  conductivity  of  copper,  but  500  times  more

permeability we have calculated the values here, so you can take 1 kilo hertz, you can see that

skin depth is even smaller in here which is more difficult to penetrate mainly because of this

permeability, we can see how it is happening.

(Refer Slide Time: 34:24)

Skin depth, it is the property of product of Mu and Sigma, so 0.1 and 500 so it becomes 50

here whereas for copper it is 1 so that is why you see the difference.
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So for iron it is more difficult to penetrate because of the relative permeability, so you get

lambda but impedance of the medium is more compared to that in copper so you can do this

calculation yourself and verify at home as homework.

(Refer Slide Time: 35:06)

Now some of the inferences that we can take of the table that we have seen, first of all the

characteristic impedance of metals are extremely small compared to free space impedance,

this is one point that we can take away from this chapter. Second, speed V and wavelength

the lambda inside metals are extremely small compared to that in free space, so this is other

inference that we can take away and it has got consequences when we talk about how metals
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can be used to shield electromagnetic waves. Shielding property of metals that you see in

hapter 5 derives from this property.
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