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This is module 2.3 of the continuation of electromagnetic principles. In this chapter we will

see about transmission lines.
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Especially we will see travelling or transmission lines, the solution for that. What will happen

when transmission lines are terminated in the load and what will happen when transmission
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lines are terminated in another line. And also we will look into expressions for transmission

line  impedance  in  front  of  a  boundary,  that  is,  in  the  presence  of  multiple  reflections.

Transmission  lines  support  a  transverse  electromagnetic  field  structure  between  these

conductors, so this is the basic assumption.

For example, structure cross-sections that can support TEM fields, they are wire above the

conducting plane, 2 parallel conductors, a co-axial cable or it could be any generic coaxial

structure, its shape may not be very regular as long as the cross-section is the same and the

line length is fairly large compared to the wavelength and the cross-section is very small

compared to the wavelength, it is possible to have a TEM field structure.

So by the TEM field structure we also assume that we can uniquely define a voltage between

conductor 1 and 2, which is an integral of electric field along any path so it will be path

independent, whatever path you will take between 1 and 2, it should be the same value or

voltage. So there is a decoupling between electric field and magnetic field when there is a

TEM field structure.  That is,  the current in the conductor is  uniquely defined by a close

integral  of  magnetic  field  intensity  around this  conductor  so  that  will  uniquely  give  the

current, so these are some of the basic conditions.

(Refer Slide Time: 2:45)

Now, first  let  us  concentrate  on  this  part  trying  to  find  the  correspondence  between the

electric  and  magnetic  fields  with  voltages  and  currents.  So  this  is  a  transmission  line

structure; two parallel conductors so this is the length, the TEM wave is propagating along

this Z direction, so E and H fields are perpendicular to the direction of propagation so let us

assume the E vector to be like this and H vector is coming out of the paper let us say then this
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is the direction of the power flow. The medium of transmission line is characterized by these

properties: conductivity, magnetic permeability and electric permittivity.

We can have a circuit representation of this transmission line, before that as we said before

for pure TEM, the voltage between 1 and 2 is defined as ∫E .dl , line integral of electric

field between the conductors at  C are path independent. Similarly, the current across one

conductor will be  ∮H .dl and the power in the Z direction is given by ∫E×H .ds ,

which  is  nothing but  voltage  times the current,  so instantaneous power  flow or  pointing

vector in the Z direction is given by the product of voltage and current at z at time T, so these

are the connections between voltage and current.

Now we can define, we can take a very small section of the transmission line let us say it is

ΔZ in this direction and represented in terms of circuit parameters that we are more familiar

with say for example, we can imagine an inductance which is related to the magnetic field

interaction and we can define capacitance more related to the electric field interaction, so C

and L are values per meter. So it can be absolute values for ΔZ to be multiplied by ΔZ. Then

because  of  this  conductivity  there  is  some  leakage  of  current  when  there  is  a  voltage

difference  between  these  two,  some  current  will  be  flowing  through  the  due  to  the

conductivity  of  the  medium  so  that  is  represented  by  conductance  G  per  unit  length

multiplied by ΔZ, so this structure can support the TEM, L, C and G.

Now in practice we have always some small resistance however good this conductor is, but

there is some series resistance. This series resistance is not part of TEM, this says that there

will be voltage drop across this so you can have destruction of TEM wave structure, but if R

is small enough still we can assume that TEM solution is approximately valid, G does not

cause any problem for TEM structure, so the resistance times ΔZ that is the series resistance

component. Now we can derive Telegrapher’s equation for the transmission line which are

nothing but, first we equate the voltage drop across a close loop like, this that is obtained by

this, voltage drop across this, voltage drop across this. That should be equal to the difference

in voltage between these 2 ports so that is written over here.

Then we can write the 2nd equation by the current entering and leaving this node over here. So

the current entering and leaving and difference is this much and that should be equal to the

current entering over here, so you have this negative sign and G(V(Z(t))), voltage across this
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+ c
dV
dt

, so we got the current also, so this is the Telegrapher’s equation. If you look at

these parameters R, L, G and C of that R is property of conductor material and conductor

cross-section, whereas L, G and C that depends also on the type of medium that you are

using, whether it is air or some other medium.

(Refer Slide Time: 8:49)

Now consider a lossless transmission line, it does not have any loss that is no attenuation that

is R = 0 that is the amplitude are same, all around the transmission lines and load distortion G

is equal to 0, no dissipation of the current along the way of the transmission line. So under

this condition the previous equations simplify into these two equations, rate of change of

voltage with respect to space equals –L 
dI (Z ,t )

dt
. So it is only spatial derivative of current

equal  to  -  c
dV (Z ,t )

dt
.  So you can  manipulate  these two equations  by writing  the  2nd

derivative and substituting one into other which you can do at home and see that it is true,

then you will get the wave equation, the second degree differential equation.

And here it is  
1

LC
∂2V (Z ,t )

∂Z2 =
∂2V (Z , t)

∂t 2 . Now we can find the solution for this wave

equation using the normal roots in differential equations and one can see that one of the

solutions is of the form, voltage at any point in time equal to the voltage that has happened at

a time earlier at z=0. For example, voltage at space Z or along the line and that time t equal to
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the voltage that would have been there at z = 0 at a time Z/V earlier so Z/V is the time

required for the wave to travel up to this point and V is the speed of the wave.

So this has the form of forward travelling wave, so V is the speed and Δt is equal to Z / V. So

this is one of the solutions, a forward travelling wave without any attenuation or distortion is

one  of  the  solutions  for  this  transmission  line.  Now  comparing  with  the  original  wave

equation we get this V square, V square is the velocity and 2nd derivative of voltage with

respect to space and 2nd derivative of voltage with respect to time. Now comparing we get this

speed v is nothing but one by square root of LC, so this is the expression for this speed, so

this speed is related to the parameter L and C.

(Refer Slide Time: 12:35)

Another possible solution for wave equation is backward travelling wave so you can say that

the wave that is present at z would be travelling backwards. So if it is a backward travelling

wave it is this kind of reflection in transmission lines that we will see later, so it is T + (Z /

V), so the total solution will be the sum of the forward travelling wave and the backward

travelling wave. So we denote that by the symbols + and - in the superscript.

It is also possible to find wave equations in terms of the current waves, so we can find the

wave equations in terms of the current, then do the same procedure then you will see that

there is some of forward and backward current waves and we can define a impedance Z0

which is defined as √ L
C

and related to the forward and backward travelling waves. So here

this symbol is negative when we are representing in terms of voltage and impedance. This
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also you can derive it  and you can see for yourself  that this is true,  there is a kind of a

homework.
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Now let us look at transmission lines boundary condition that is when transmission line is

abruptly terminated either by a lumped impedance or it can be another transmission line that

we will  see in the next page.  Suppose,  it  is terminated in a lumped impedance,  and this

reflection point here, so we call it as R so we call IR, VR and ZR, ZR is the impedance so VR is

the net voltage over here, so this is the sum of forward and backward reflected waves over

here and the impedance √ L
C

 is obtained as 

I+¿

V +¿

¿
¿

 or 

I−¿

V−¿

¿
−¿

.

Now, if we say VR / IR, so boundary condition says that VR / IR the net current here and net

voltage here should be equal to ZR, so this is given by summation of forward and backward

waves divided by summation of forward and backward currents. You can manipulate this and

easily find that this is nothing but from this we can say that if we try to find 

V R
+¿

V R
−¿

¿
¿

so this is

reflection coefficient, reflection coefficient is the wave that is reflected back divided by the

wave that is incident. So that is the reflection coefficient for voltage, so that we define with

this symbol ρ. So voltage reflection coefficient from this group of expressions you can derive

as the termination impedance - the characteristic impedance Z0 divided by the sum of those

impedances, so difference divided by sum, so this is voltage reflection coefficient. 
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Now we can derive  another  reflection  coefficient  also,  so  intuitively a  current  reflection

coefficient will have a negative sign in front. So you get current reflection coefficient which

is negative of voltage reflection coefficient. Now the incident power is product of the forward

moving  voltage  and  current  waves  and  reflected  power  is  product  of  backward  moving

voltage and current waves. So if you take the ratio of reflected power divided by incident

power and simplify it, we will get an expression for power reflection coefficient or we can

obtain power reflection coefficient as a product of voltage reflection coefficient and current

reflection coefficient, so this is the expression, so here this is the square. 

(Refer Slide Time: 19:15)

Now consider  a  case  of  transmission  line  boundary  conditions  when  it  is  terminated  in

another transmission line. This situation can happen quite often in nature, you are connecting

two cables of different characteristics, so let us say that cable one has impedance Z0, so any

current at just left of this junction we call it as I0, and any voltage just left of this junction we

call it as V0 so the medium 0, then the current that is going into the second conductor, we call

it as I1 and voltage just on the right we call it as V1 like that, and this transmission line has an

impedance  Z1.  So  note  that  these  2  currents  are  the  same because  some of  the  energies

reflected back from this point and these 2 voltages are different from these 2 voltages.

Now reflection coefficient, for defining reflection coefficient we can if these lines are quite

long, we can consider it as termination with other impedance that is equal to the characteristic

impedance of this line. Now here it is assumed that this line is quite long and not influenced

by what is happening over here, then the reflection coefficient is something like we derived

earlier  in  the  previous  figure  difference  in  the  impedances  divided  by  the  sum  of  the
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impedances and current reflection coefficient with a negative sign in front. And the power

reflection coefficient that is power that is reflecting here, that coefficient can be obtained by

this expression so this is very similar to the previous derivation.

Now what is new is that we need to find what is going into this. Of course, whatever is

remaining after reflecting is going into this one so that is called transmission coefficient with

a subscript T. So voltage transmission coefficient is defined as the forward wave that is going

into this medium, so we call it as V1
+ it is not the same as V1 you have to understand that, V1

is a combination of forward and backward waves, so V1
+ divided by V0, forward wave that is

coming in this direction along the medium 0. So that is equal to so the voltage at this point,

the voltage is V1
+ has to be V0

+ of the forward wave and reflective wave that will be the net

voltage over here divided by forward wave that is going into this medium.

So which will be equal to 1 + you can manipulate this and find out that this is the reflection

coefficient into this medium, so that will be nothing but if you write out these equations and

you will see that this is 1 and this is this reflection coefficient, V0
-  / V0

+. So you will get as

2Z1

Z1+Z0
, so this is what you will be getting. Similarly, for the current reflection coefficient

we can write in the similar manner ratio of the forward wave going into this divided by the

wave falling into this, so that will be equal to the sum of the forward waves + reflected waves

divided by the wave that is going into the 2nd medium, and again that is written as 1 + ρ0
I, so

you will see that 
2Z0

Z1+Z0
, you will get it like that.

So the expressions are very similar except that for the voltage transmission coefficient, so this

is the transmission coefficient for the voltage transmission coefficient you have Z1 here, and

for the current transmission coefficient we have Z0 over here. Then total power transmission

coefficient,  this  is  multiplication of voltage transmission coefficient  and multiplication of

current transmission coefficient. While talking I might have said that reflection coefficient

but these are not reflection coefficient, transmission coefficient, the way to identify is that

you look at subscript T, T means transmission coefficients. So, this is the power transmission

coefficient into this line.
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Now transmission line input impedance, often we have situations in which we are connecting

a short line or it can be a long line also to an impedance, but they are not infinite transmission

lines so you have reflections from here, reflects back so you may have multiple reflections

like that. So in that case often it is of interest to see, what is the impedance at a given point X

as you are looking into the load side say for example, if you are connecting 2 instruments

similarly, we always talk of impedance matching this  has got relevance to that.  And also

when you are connecting equipment to the ground there also this is applicable. So a generic

transmission line has characteristic impedance which is given by √ R+J ωL
G+J ωC

.

So  writing  the  impedance  as  Z  equal  to  X  as  instantaneous  voltage  at  X  divided  by

instantaneous voltages, instantaneous current at X, Vx by Ix. So this Vx and Ix includes all

forward and backward waves. If we consider it like that, so you can write it out and it will be

a  long  algebraic  expression  and  simplify  and  finally  you  may  end  up  in  this  type  of

relationships. Now, of that special case is one that is shown out here when X = 0, so this is

the input impedance as seen from the source side.

So you have a load and you have a line and you are connecting this load and the line together

to the source, so the source will see an impedance that is given by this expression simplified

expression.  So  that  is  the  input  impedance  from  the  source  side  that  is  equal  to  the

characteristic impedance times and this is hyperbolic function and this is the propagation

constant  Gamma,  which  is  frequency  dependent.  So  from  this  expression  you  can
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immediately see they are similar the numerator and denominator except that this L and C are

appearing at different places.

So when the characteristic impedance is same as the load impedance, suppose we use a cable

that has the same characteristic impedance as the load, then you see that the numerator and

denominator  are  the  same  and  it  becomes  1,  the  input  impedance  is  nothing  but  the

characteristic impedance. So you get the matched impedance, so this is one of the reasons

why we always can connect instruments together. Often it may have 50 ohms impedance with

many of the standard machine equipment that we use in the lab, so if we use that 50 ohms

cable and 50 ohms impedances then we can match.

If the load impedance is not equal to characteristic impedance then input impedance will be

varying from a very long value to a high-value because this is propagation constant, so it is

periodic, and that depends upon the electrical length of the line. So we will look into some

special cases when ZL is not equal to ZC these kinds of effects.

(Refer Slide Time: 30:29)

Input impedance of transmission lines; let us look into some special cases. For simplicity we

assume a lossless transmission line that is R = 0 and G = 0, it means that attenuation α= 0

therefore, propagation constant  γ = jβ, where  β  is 2*π/  L. Then from the trigonometric

identity we know that  hyperbolic  transformation tanh (jβL) equals  j  tan (βL).  When the

length of the line is extremely small compared to the wavelength that is βL << 1, and also βL

far less than the characteristic impedance and the load, then we find that input impedance is
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load  impedance  always,  this  we  can  verify  that  by  looking  at  the  previous  expressions

because β L when it is too small, this will be equal to 0.

So  it  means  that  when  the  line  is  extremely  short  compared  to  the  wavelength,  input

impedance will be always equal to terminating impedance. Now let us look at some of the

cases,  suppose transmission line is  connected to the ground and short,  ZL=0, then in this

particular case from the previous expression.

(Refer Slide Time: 32:30)

From here  you  can  get  that  when ZL =  0,  you  get  an  expression  that  is  equal  to  input

impedance is equal to ZC Tan β L, so this is what you will be getting. Now the length L can be

different  electrically depending upon the  frequency, so assume a  case  in  which this  is  a

quarter wavelength, λ/ 4, then βL=π/2. So substituting this we see that Tan (π/2) is infinity
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that is Sin(π/2)/ Cos (π/2), so we get the input impedance as equal to infinity even though it

is a short-circuit, it should be zero normally we assume, but it is not, it is infinity so the earth

will look like an open circuit. So even though you think that you have earth it is not really a

short-circuit, it is an open circuit.

Now consider another case in which you are deliberately leaving it open, ZL = ∞ . Again

from the previous expression for input impedance for this particular case, we can signify the

expression to be in this form and assume that your length is λ/ 4 then you will find that input

impedance is equal to 0. So even though it is open circuit, from the equipment side it looks

like short-circuit,  so this  is  a kind of contradiction.  So this  kind of funny behaviour  can

happen at various frequencies and this type of behaviour can happen with lines length of only

78cm at 100 megahertz, at higher frequencies it will be even at lesser length.
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