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Review of electromagnetic principles continuation. In this chapter we will inspect electric

and  magnetic  fields  from small  dipoles;  these  are  the  electric  dipoles  and  the  magnetic

dipoles. Magnetic dipole is basically a small loop; we will introduce the concept of wave

impedance and also find the expression for maximum possible radiated field.
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Now take this picture on the left over here, if we want to find the radiation field from a piece

of wire, this piece of wire can be component leads or it can be a track in the printed circuit

board or it can be just a connecting wire between two circuits. So if we want to find the

radiation field from such a wire then you can divide that into very small dipoles, these dipoles

are shown here. Then if you know the expression for electric and magnetic fields from a

small dipole like this then you can add up all these dipole fields to find the total field, so that

is the principle involved. So the basic expression that we want to know is that from the small

electric dipole, these are called electric dipoles.

Now you can imagine another scenario in which you have a wire that is closed like a loop

like that. So here we have 2 possibilities; one possibility is that you can divide this wire as we

did before into very small dipoles, find the electrical and magnetic fields from each of these

dipoles at a point where we are interested in finding the fields then sum it up. Another way is

that, this area of the loop that you can divide into very small loops so that it covers more or

less the complete area, then these are called the magnetic loops or magnetic dipoles. Then

from there you can find the total magnetic field, so there are 2 possibilities in finding the

fields.
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Now first consider the electric dipole, so this is represented by a small piece like this which

has a dipole moment, this dipole is a small part of a wire of length l and carry a current I then

the electric dipole moment is defined as 

(Me = I × l) M subscript e = I times L, 
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so the current is directed in the Z directions so this is Cartesian coordinate X, Y, Z what is

shown, but we will find expressions in spherical coordinate because that is more convenient

for us, so this spherical coordinate is defined like this. So if this is the any point is space p

then from the origin to this point the distance is called R that is one of the coordinates.

Then from the Z direction an angle (θ)Theta so this is the second of the coordinate then the

rotation φ(Phi) from the X axis, this orthogonal system R Theta and Phi, so field is expressed

in terms of R Theta and Phi, the orthogonal spherical coordinate system. Now if that is the

case, we can find expression for the R component of E field, the Theta component of E field

and the φ(Phi)  component of H field. So H will have only one component that is Phi because

if you have current in this way then the fields are around this in the φ(Phi)  direction so we

have only φ(Phi)  components for the H field from the symmetry. Then for the E field we

have only R component and theta component and you do not have any φ component for the E

field.

Now if you look at the expression for the electric field and the magnetic field, Z0 is the free

space  impedance  377,  we  will  not  go  into  the  details  of  this  equation  because  we  are

interested in only one term of this equation usually. Now what you can notice is that this is

varying with respect to the distance,  now it can vary as R square or R cube or if it  is θ

component it can vary as inversely proportional to R or inversely proportional to R2 or R3, so

here you can see that it can vary as 1 over R or 1 over R square. So as you are moving far

away from this dipole, by the way it is assumed that the length L of the dipole is so small

compared to the distance that you are interested in the field as well as wavelength involved,

then only this expressions are true, this is a very small dipole compared to the wavelength as

well as the distance R.
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Now very far away from the dipole, 1/ R3 times and 1/R2 times fall off very fast, and basically

the terms that are significant in value are 1/R terms. So where are the 1/R terms? So in this

you do not have because this is either 1/R2 or 1/ R3 so here you have one term that is varying

as 1/R and here also you have 1 term varying as 1/ R, so these phase are more dominant far

away from the dipole. So let us look at the expressions for those fields so E(θ) and H(φ) and

they are orthogonal to each other, these 2 terms and far away from the dipole this is almost

like transverse electromagnetic waves, so the pointing vector or the energy flow is in the R

direction faraway.

And θ component and φ components are lying in the plane perpendicular to the direction of

propagation  on  the  fields.  So  this  is  the  expression  for  the  θ  component  and this  is  the

expression for the φ component, they are proportional to the current and also it varies as a

function of Sinθ so it is angular dependent. So when Sinθ is 90 degree, the field will be

maximum, and when Sin Theta is equal to 0, in this direction the field is 0 so the radiation

pattern is more like this as I am drawing here, so this will be the radiation loss faraway.
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Now consider the case of magnetic loop, so here again from the symmetry there is a loop here

in the XY plane, again spherical coordinate is defined and this has a dipole moment I times A,
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where A is the area of the loop. So the shape of the loop is not very important even though for

convenience  it  shown as  round,  it  can  be  any shape  as  long  as  this  loop  is  very small

compared to the wavelength and the distance where we are interested in finding the field, so

the shape does not matter really so this is the dipole moment.

Now here also, from the symmetrical configuration you can see that okay any small voltage

can drive the current easily around it so it will create magnetic field as well, it can create an

electric field drop around the loop, so you can see that electric field will be in φ direction

because it can easily create an electric drop. Then magnetic field will be in both R direction

as well as Theta direction so you have 3 components only, other components are 0. So here

also these components can vary as 1/R3 or 1/ R2 or 1/R and far away when Beta are far less

than 1, Beta is 2 Pi/ Lambda.

So at far distances we are interested only in terms that is varying as 1 over R because those

terms will be the dominant one and others will be approaching 0 so those terms are written

over here and you can see that Phi and H are orthogonal to each other and they are also

orthogonal to the direction of propagation, so far away you can assume that this produces

something like a TEM wave. Now E field and H field both are proportional to the dipole

moment I0 times area of the loop and also Sin Theta, so here also the radiation component is I

mean radiation is maximum when theta equal to 90 degree in this direction of the plane of the

loop and minimum or 0 perpendicular to the loop in the Z direction far away from the field.
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Wave  impedance  is  defined  as  the  ratio  of  electric  field  to  magnetic  fields  but  those

components  that  are  perpendicular  to  the  direction  of  propagation.  So  if  direction  of

propagation  is  R away from the  origin,  then  the  electric  and magnetic  fields  in  a  plane

orthogonal to that direction is taken to find the wave impedance. So for electric dipole, it

becomes ratio of Theta component of the E field to the Phi component of the H field, and for

the magnetic dipole it becomes the Phi component of the E field and θ component of the H

field. So this wave impedance is a function of distance or electrical distance from the dipole

and it is also dependent upon Beta r, now let us find the wave impedance of the E dipole.

Z E=
Eθ

Hϕ

Z H=
Eϕ

H θ

βr=
2πr
λ

So if you take the expression for the θ component of E and φ component of H that you have

seen in the previous paragraph these expressions.
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Then you can see that it can be simplified by this expression, β = 2π/λ and βr = 2πr/λ. Now if

we have βr far greater than 1 or far from the dipole, the far field condition then this becomes

very small  and basically  what  is  in  the  square  root  is  just  1,  so you can  see  that  wave

impedance for electric dipole far from the dipole is nothing but free space impedance Z0 that

is 377 Ohms, but situation is different when βr is far less than 1 or near to the dipole. When

wave impedance, you can see that now  βr is small so this becomes very big i.e one by βr, so

simplifying  you  get  it  as  Z0 by  βr  and  wave  impedance  is  far  greater  than  free  space

impedance, Z0 that is √ μ
ε

 or c=
1

√με
.
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Now the expressions for wave impedance, simplifying you get as 
1

2 πfεr
, where Epsilon is

the  electric  permittivity.  So  you  can  see  that  very  close  to  the  dipole  wave  impedance

becomes quite big and far from the dipole it should be this, but of course this expression is

valid only very near to the dipole Beta r far greater than 1, beyond that it is not valid.

|ZE|=Z0√ [1+(
1
βr

)
6

]
[1+(

1
βr

)
2

]
When βr≫1∨2 πr≫ λ ,|ZE|≈ Z0  Far from the dipole the wave impedance is equal to free-

space impedance.

When   βr ≪1∨2πr≪λ ,|ZE|≈
Z0

βr
= 

Z0 λ

2 πr
 Near to the electric dipole, 

wave impedance is far greater than free space impedance
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Now we can find wave impedance for H dipole, so from the expressions for the E field and H

field and the ratio of that, it can be shown that as wave impedance equals Z0 multiplied by

this expression, where Beta equal to 2 pi by Lambda, βr=2πr/λ (Beta r = 2 Pi r b y Lambda).

Now here we can take 2 conditions; one is when Beta r is far greater than 1 so under that

8

Z0=√ μ
ε

, f λ=c=
1

√με
            |ZE|=

1
2 πfεr



condition you will see that wave impedance is nothing but the free space impedance. And

when Beta r is far less than 1, you will see that it is given by free space impedance multiplied

by 2 Pi by r by Lambda, so near to the magnetic dipole, wave impedance is smaller than free

space impedance and it is 2πfμr , Mu is magnetic permeability.

{ 1
βr }

2

−1¿2+{ 1
βr }

2

¿
¿

|ZH|=Z0
√[1+(

1
βr

)
6

]
¿

When βr≫1∨2 πr≫ λ ,|ZH|≈Z0  Far from the dipole the wave impedance is equal to 
free-space impedance.

When   βr ≪1∨2πr≪λ ,|ZH|≈Z0 βr  = 
2πr
Z0¿

)/λ   Near to the magnetic dipole,

wave impedance is far smaller than free space impedance
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So we have two different  kinds  of  expressions  near  to  the dipole for electric  dipole and

magnetic dipole, whereas far from the dipole both gives free space impedance, so let us plot

this out. So in this, wave impedance is plotted with distance from the dipole so to normalise

for the frequency or wavelength, we take β is 2 π r/ λ as the X axis, so βr = 1 will be 2πr =

Lambda, when λ equal to 2 π r, then it becomes 1 then this is the wave impedance and this

blue line is for electric dipole and red line is for magnetic dipole.

You can see that for the magnetic dipole wave impedance starts from a very low value, the

impedance then increases as distance is increased, it reaches 377.  For the E dipole it starts

from a high impedance when you are very close to, then it comes down and reaches 377. So

often when we have a problem of magnetic fields we talk of low impedance magnetic fields

and we often talk of high impedance electric fields when we are close to the source, so the

reasons for those expressions are coming from this graph. High impedance electric field is

close to electric dipole, low impedance magnetic field close to magnetic dipoles, far from the

dipole wave impedance is free space impedance for air.

Wave impedance concept we will  be using quite extensively in the analysis  of electronic

shielding in later chapters, so that we will talk about what is ECL to shield against  high

impedance  electric  fields,  whereas  it  is  very  difficult  to  shield  against  low  impedance

magnetic  field  or  we  will  say that  shielding  is  more  difficult  when  it  is  low frequency

magnetic field.
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Now, where will be the maximum radiated field? So this is a dipole, first we look at the far

field, maximum electric field we have seen before when θ = 90 degree, so in this direction

expression is given by this, so maximum radiated field is proportional to the current as well

as electrical length of the dipole L by Lambda, and inversely proportional to the distance

from the dipole so this is perpendicular, maximum radiation field is on a perpendicular plane

to the dipole. Now here, maximum radiation is in the plane of loop in the far field and A is

area of the loop, so maximum field in the φ direction is proportional to the current inversely

proportional  to the distance and ratio  of the area of  the loop divided by Lambda square

wavelength square.

Now in the near field maximum couplings are along the dipole length and perpendicular to

the loop. So this is opposite to that in the far field so in the near field maximum coupling is

along the dipole for the electric field and perpendicular to the loop for the magnetic loop.
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Now this shows example calculation for the maximum radiated field at a distance of 10 meter

and 10cm dipole  versus  3 by 2 square  centimetre  loop,  again  shape  of  the  loop can  be

anything. In the standards it has been specified that electric field should not exceed 32 micro

volts per meter at 30 megahertz, so you will already exceed this limit if you have a small

dipole carrying a current of 170 microampere, and if it is for this small loop 450 microampere

will  be  the  limit,  above  that  you  already  exceed  this  value  permissible  value  by  the

government regulations.

Similarly, at 230 megahertz to reach this value you need only 22 microamperes for dipole and

for a loop you need only 8 microamperes because for the loop 8 divided by Lambda square

that is why the changes are much faster here. Now sometimes we can find the radiated field

in time domain other than the frequency domain, then you can see it is proportional to rate of

change of current dI by dt and the length of the dipole and inversely proportional to the

distance and Mu0/4 Pi these are all constant, C is also constant you can write it in this way 10

to the power – 7 l by r d I by dt volts per meter. And B Phi, flux density, is 10 raise to - 7

divided by C r d I by dt Weber per meter square, so you can see that ratio of E and B it is

speed of light, radiation field is proportional to time derivative of the current.

. 

.
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