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So, in the last time we just saw the definition, the statement of the Lyapunov’s theorem on

stability and asymptotic stability. We also saw an outline on the proof. Today we will do a

very quick review of the theorem statement and we will proceed with the proof for both

stability and asymptotic stability.

So, consider the dynamical system x dot is equal to f of x and, suppose x is equals 0 is an

equilibrium point. And this is this equilibrium point is in a domain D, a subset of R n. Suppose



there is a continuously differentiable function V, from this domain to R such that V is equal to

0 at the equilibrium point 0. And it is positive for all other points and its rate of change with

respect to time is less than or equal to 0; it is non positive in this domain. 

If such a V exists which satisfies these properties, then the equilibrium point is stable. Further,

if the rate of change of V is negative for all points in the domain except the origin. Of course,

in that case this equilibrium point is not just stable, but in fact, asymptotically stable.
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So, the proof that we follow is from the book by Hassan Khalil’s on Non-Linear Systems. So,

what is required to be done in the proof, what is this to prove stability? Whenever somebody

gives us an epsilon greater than 0 we need to construct this delta greater than 0 such that any

trajectory starting inside this ball B comma delta does not leave this other ball B 0 comma

epsilon.



So, in this notation is that the first 0 is the center of the ball and delta is a radius, similarly

here. So, in order to construct this delta, we will construct one set omega beta such that this

omega beta is contain inside this ball B epsilon. And we will show that this omega beta set is

positively invariant; that is trajectory starting inside the set do not leave the set.

(Refer Slide Time: 08:37)

Finally we will also reduce an existence of a ball B delta inside this omega beta. To do all this,

we will crucially use the properties of that Lyapunov function V. The existence of this ball B 0

comma delta we will use the continuity of the Lyapunov function at 0 and the fact that V at 0

is equal to 0.

Of course, whenever we prove something at the end of the proof, it is important to verify that

all the assumptions in the theory statement indeed got utilized in the proof. Or else one could

in principle prove a similar statement the same statement under lesser assumptions. Since we



did not utilize some of the assumptions, we could consider relaxing those assumptions and

having the same theorem statement.

So, for the rest of this proof, we will since all the open balls we are considering are centered at

the origin. We are temporarily we have decided that the origin is equilibrium point, whichever

point is equilibrium point we can always shift the coordinate such that that point is the origin.

And since 0 is the center we will only denote the radius of the ball hence B delta is an open

ball of radius delta. The around the origin part we do not require to mention again, again.

(Refer Slide Time: 03:49)

So, let epsilon B given let epsilon greater than 0 be given. So, first check that B epsilon is

indeed contained in the domain D; if not one can choose epsilon that is slightly smaller. So, for

this ball B epsilon we construct the boundary of the ball. So, what is the boundary of the ball?

B epsilon contains all the points which have radius strictly less than epsilon, from the which



have distance strictly less than epsilon from the origin; the its boundary is the set of all points

whose distance from the origin is equal to epsilon.

This is the boundary of the ball this is the surface of that sphere. On this particular boundary

on this ball, we will now look at the Lyapunov function how that behaves. So, notice that this

Lyapunov function, the value of the Lyapunov function on all the points on this boundary is

strictly positive.

(Refer Slide Time: 05:39)

Why? Because it is equal to 0 only at 0, at any other point is positive and all the points on this

ball are epsilon away from the origin. And hence the Lyapunov function is strictly positive.

So, this is a reason. So, if it is positive on all the points on this boundary on this del B epsilon;

then we will look for the minimum value that V takes on del B epsilon. On the minimum over



all x such that mod x the distance of x is equal to R. The norm of x is equal to R norm of x is

nothing but the distance of x from the origin. For all such points we will look at the minimum

value that V takes and let alpha B that minimum value.

So, we already know that alpha is strictly positive. Then we take any beta, that is between 0

and alpha; in order to take this beta it is required that alpha is positive and alpha is the

minimum that v takes on the boundary of B epsilon ball. So, once we have chosen some beta

that is strictly less than alpha, we will define this set called omega beta which is a set of all the

points in this ball B epsilon; such that V of x is at most e qual to beta.

So, inside this B epsilon ball, there are various points and at various points the Lyapunov

function takes different values. We will pick all those points where the Lyapunov functions

value is at most equal to beta. Once you have construct this omega beta set there are two

properties important properties of the set that we need. One is that omega beta is in the

interior of this ball B epsilon it does not come to the edge, second the set omega beta satisfies.

This important property that any trajectory inside this omega beta at t equal to 0; anything that

starts inside omega beta stays inside this set for all t greater than or equal to 0. In other words

we use the word that omega beta is positively invariant with respect to the dynamics of f. So,

these two properties we will first show.
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So, the first important property is that omega beta is in the interior of B epsilon; but suppose it

was not in the interior then there would be a point that is on the boundary of B epsilon and

also inside this omega beta set. So, this part of the proof we will replace and hence i am going

fast. So, now, we come to the second part of the proof.
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What is the other claim, what is other properties that omega beta set has? We claim that it is

also positively invariant, how do we prove this? So, we know that V dot x is less than or equal

to 0.

So, what does that mean when we integrate this with respect to time we see that V at x at any

time is less than or equal to V of x at 0; which was equal to which was at most equal to beta.

So, this particular inequality is satisfied for all t greater than or equal to 0; this inequality can

be obtained simply by integrating this quantity. And using the fact that this quantity is less than

or equal to 0; yeah we can do it a little more slowly on this piece of paper.
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We already have assumed this particular property of the Lyapunov function. When we

integrate this from 0 to t of V dot of x this integral is also less than or equal to 0; because the

integrating some quantity that is negative that is non positive. So, this integral of the derivative

of a function is nothing but V of x of t minus V of x at 0 and the final value minus the initial

value. This itself is less than or equal to 0 which says that is less than or equal to V.

Of course this is expected V is a function that is decreasing with respect to time. Hence at any

time t that is greater than or equal to 0, this value will be less than or equal to this value. So,

that is all that is said in the inside this inequality. And this value itself this value itself was less

than or equal to beta, that was the method of construction of the omega beta set; since we are

started inside this omega beta set this value is at most beta.



So, this proves that omega beta set is positively invariant, if the value is less than or equal to

beta t equal to 0, then for all future time it can only decrease. And hence that trajectory

remains inside the set omega beta. Further this omega beta set we also saw just now is a

compact set, which means it is a closed and bounded set. Hence x dot is equal to f of x has a

unique solution defined for all t greater than or equal to 0. We saw that if you have a compact

set which is positively invariant.

 And the function is just locally Lipchitz then we are able to. In fact, assure global existence

and uniqueness of solution for this differential equation. So, any solution starting inside omega

beta stays inside the set and omega beta set inside itself was contained inside the ball B

epsilon. Hence this omega beta is also hence the solution also remains inside d epsilon ball.

So, does this prove that the point 0 is stable? No, not yet; we want that the result B delta ball

such that solution starting within it remains inside the ball B epsilon. We have only been able

to show that any solution starting inside some set omega beta stays inside this omega beta and

hence inside the ball B epsilon.
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So, how do we find this delta greater than 0, which is contained inside omega beta set? Since

V is continuous and V of 0 is equal to 0, V x is close to 0 intuitively speaking since V is

continuous at 0 and its value at x equals 0 is equal to 0.

It cannot be very large for points that are close to the origin. So, this particular property is

what continuity says more precisely V is continuous at x equals 0. If and only if for every beta

greater than 0 there exists a delta greater than 0; such that for all points inside this be delta ball

V of x can differ from V of 0 by at most amount beta and this is a definition of continuity.

It is a so, called epsilon delta definition of continuity, but since we are requiring epsilon in a

different context; we have just replaced epsilon by beta here. Since V of 0 is equal to 0 and V

of x itself positive, we can get rid of this modular sign here and V of 0 was anyway equal to 0.

So, this particular definition of continuity becomes V is continuous at x equals 0 implies that



for any beta greater than 0; there exists a delta. Such that, a for all points x in the ball B delta

V of x is strictly less than beta.

This is nothing but to say there exists a ball B delta that is contained inside the set omega beta.

For some delta greater than 0, we are able to find some positive delta such that, the ball B

delta is contained inside the set omega beta.

(Refer Slide Time: 12:56)

So, what we have shown is no matter what epsilon greater than 0, we start with there exists a

delta greater than 0; such that these two inclusions hold B delta is contained inside this omega

beta set.

Omega beta is not a ball it is a set only means omega beta set itself is contained inside this

larger ball B epsilon. Further, if the initial condition is inside B delta; it means that the initial



condition x of 0 is inside the set omega beta also. And hence for all future time x of t is inside

omega beta and hence x of t is contained inside the ball B epsilon also; this was precisely what

was to be shown to prove that x is equal to 0 is an equilibrium point.

So, this completes the proof of stability for the Lyapunov theorem.

(Refer Slide Time: 13:48)

What is to be proved for asymptotic stability? If V dot of x is in addition assumed to be

negative for all points except the origin for all points except the equilibrium point, then we are

to yet show that the equilibrium point is in fact, asymptotically stable.

So, to show that it is asymptotically stable what is to be shown? We need to show that x of t

tends to 0, as t tends to infinity. But in since V of x is equal to 0 only at the origin. We can



instead show that V of x tends to 0, why? Because, if V of x tends to 0, that can happen only

when x tends to 0 as t tends to infinity.

So, what does this property that V dot of x less than 0 mean? It means that V is monotonically

decreasing with time, as a function of time V is only decreasing. And further it is also bounded

from below yeah, V cannot arbitrarily decrease for this we need to see a small figure what a

monotonically decreasing function can look like. This is V which is a function of x.

(Refer Slide Time: 14:56)

But x itself is a function of time and hence we can draw this. So, here is what value of V at x

equal to? Value of V at x 0 is equal to and the function is only decreasing with time. So, there

are three possibilities; one it could converge to some nonzero positive value other it could

converge to 0 or it could converge and it could it need not converge, it could go on

decreasing.



So, at least we know that V is bounded from below hence this is not possible it is bounded

from below by 0. The minimum value that x V itself is a positive function it is equal to 0 only

at x equals 0 at all other points it is positive. So, it is not possible that at any time instant the

trajectory goes, the function V as a function of time cannot become negative; hence it can be

only one of these two.

(Refer Slide Time: 16:12)

Yeah, also of course, it is not possible that V of x oscillates; it is not possible that why is this

not possible? Because here is a region where V dot is positive yeah over this region V dot is

positive, but we know that V dot is always less than 0. It is monotonically decreasing, if it is

monotonically decreasing such oscillations are already ruled out. Hence we are dealing with

one of these three cases is going on decreasing arbitrarily too small to small values or it comes



in converges to the 0. Or it converges to some other value or of course, it can converge to

some negative value.

This is ruled out this is ruled out both because we know that V is bounded from below by 0 by

the 0 function. Hence it can be only one of these and these cases yeah. So, we are going to try

and use the various properties of V to rule out this also. So, that we say that the only way we

can behave is that it for each initial condition it comes in converges to 0. For V of x tending to

0 as t tends to infinity and this can happen only when x tends to 0.

(Refer Slide Time: 17:37)

So, this is what is to be shown to prove that it is asymptotically stable. So, the first thing is

because V is bounded from below and since V is monotonically decreasing a limit does exist.

Suppose this limit is c, as t tends to infinity V of x of t converges to c and we also know that

the c can be non negative only it cannot be negative.
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So, to show that c is indeed equal to 0; we will use a contradiction argument what is this

contradiction argument? We will assume the con to the contrary, we will assume that c is

positive c is greater than 0 and then we will use continuity of V to prove that this cannot

happen.

So, suppose c is greater than 0, then by continuity of the function V of x like we had proved in

the stability case. Here also if c is greater than 0 then by continuity of the function V there is

some d greater than 0; such that the ball B of d is contained inside the set omega c yeah.

Instead of beta greater than 0 we have a c greater than 0 hence we construct this omega c set,

omega c set is a set of all points where the value of V of x is at most equal to c. And this B d

is some ball that is contained inside omega c; we are able to constrain this B d ball again by

using the continuity of the function V at x equals 0.



Now the limit, what does it mean that as t tends to infinity V of x of t is greater than or equal

to c and the limit is equal to c. It means that, for all t greater than or equal to 0 this V of x of t

is greater than or equal to c. And this just means that the trajectory lies outside the ball B d for

all t greater than or equal to 0. So, this is a very important argument.
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So, we have to see a figure, this was our original ball B epsilon this is our state space x 1 x 2.

So, we are assuming for the time being that there are only two state components.

But more generally, this is a ball in R n inside this d epsilon ball we have constructed this

omega beta set. Right now, this omega beta we have going to denote as omega c and inside.

So, the omega c set as i said need not be a ball it can it might be more general set, but this



omega c set does not come too close to the origin. In other words, there is a open ball B delta

that is contained inside this omega c set. So, this is this ball which we have called B delta.

So, now look at this region that is outside yeah. So, x greater than or equal to the norm of x

greater than or equal to delta, but the norm of x is less than or equal to epsilon. So, sorry say

epsilon is epsilon is positive. So, this absolute value sign is not required. So, what does this

region signify? It signifies the region outside this ball B delta, but inside this ball B epsilon.

So, B epsilon is open except for the fact it is inside this ball B epsilon, but outside of this ball

B delta. So, the fact that V of x is always greater than or equal to c means that the trajectory

does not enter this set omega c. If it does not enter inside this omega c it can of course, reach

the boundary because the boundaries is where x of t is equal to c; on this boundary it could

come, but it does not go inside this set omega c. And this d delta ball is contained strictly

inside this omega c set.

And hence we have now concluded that if it starts somewhere here, it can at most come up to

this omega c.
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This is our ball B epsilon there is a set which is not a circle its not a ball this is omega c and

inside this there is a ball B delta B d sorry, we are now called it B d. Now we have already

shown that if a trajectory starts somewhere here it can only come close to omega c it can come

to the boundary, but cannot go inside. And hence in particular it cannot go in into this ball B

d.

So, what that is precisely the statement that we are saying here that the limit of x of the limit V

of x t is greater than or equal to c; it just means that the trajectory x of t lies outside the ball B

d for all t greater than or equal to 0. And hence we will now look at optimizing this particular

V dot function over the set, over the difference between what is outside B d and inside B

epsilon ball.
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So, over the set this is the ball B d, this is the ball B epsilon the fact that omega c is something

sitting in the middle. So, over this particular shaded region, we are going to now look for the

minimum value of V dot yeah. So, minimum value of V dot of x at each point V dot is some

function it is a rate of change of V; with respect to the trajectory at that particular point

minimize this particular quantity over the shaded region. For all x inside the shaded region you

want to just minimize this quantity.

So, first import property is sorry I am sorry for writing the minimum it is the maximum. We

are going to maximize this particular quantity this particular quantity denotes the rate of

change. So, its maximum value is the maximum increase, but then this V dot is decreasing as a

function of time. So, this V dot at every at every x it is strictly less than 0 why because the

point x equal to 0 is ruled out; V dot is equal to 0 only at the center at.



So, hence inside this region V dot is strictly negative and it is some function. If it is some

function that is strictly negative we can look for the maximum value of V dot over the shaded

region even the maximum value is negative why? Because it is strictly negative for all points

here hence the maximum value is also negative.

So, let the maximum value be denoted by minus gamma. So, here is some quantity gamma that

is positive why is that strictly positive? Because V dot is strictly negative inside this region and

hence it is maximum value, if the maximum exists is also negative. So, the next question that

arises is the does the maximum exist? Why because over a set in general the maximum or the

supremum may or may not exist.

So, we will see some simple graphs where this can happen, but we will use a very important

property that over a compact set a continuous function achieves both its maximum and

minimum yeah. And this particular set that shaded region is a compact set ok. So, what is the

problem that a function may or may not achieve its maximum and minimum values?
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The first important property is we can have this particular set for the purpose of this we

require to plot V of x versus x hence x has only one component.

So, what this particular set? It is possible that V of x is going is defined at every point in this

open interval in the open interval a to b, for x in the interval a to b it is possible that x goes to

infinity it becomes unbounded; as x tends to B it becomes infinity. And hence maximum of

course, does not exist even the supremum yeah the value that it can become close to even that

value does not exist it is unbounded right. Similarly the minimum value the infimum also may

not exist simply because it is unbounded.

So, in our case this cannot happen; because first of all we are dealing with a closed interval

um. And moreover this is a bounded interval and another situation where we can have a closed



interval a closed set over which the function does not achieve its supremum is if the set is itself

unbounded.
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So, consider the interval 2 to infinity. Yeah this is x this is V of x. So, over x in the interval 2

to infinity, this is this set itself is a closed set it is a closed subset of R n of R 2 comma infinity

is a closed set of R in.

On this close set just because a set is closed the supremum may not be achieved the maximum

may not be achieved the set also requires to be bounded. So, suppose look at the function

now, V of x equal to e to the power x. So, this particular function over this closed set does not

achieve its maximum, it does not achieve its supremum also. And there is no number to which

it becomes arbitrarily close to and is always below that number that number would be called

the supremum, such a number does not exist for this function simply.



Because this set even though it is closed it is unbounded; however, in our case we are dealing

with a closed set and also a bounded set.
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In other words it is a compact set over compact set the function. In fact, achieves the

maximum and its minimum. Suppose this is the interval 2 to 8 this is x this is V of x there is

this continuous function its continuity is also important; suppose this is the interval.

So, there is indeed a value of x where it achieves its maximum value there is one other value at

least where it achieves its minimum value. So, the maximum and minimum are in fact,

achieved, that is why we will say that the maximum minimum of that particular function over

that set exists why because this interval 2 to 8? It is both a closed and bounded set.



So, V of x achieves meaning of achieve means there is a need of point x where the value of V

of x is equal to the maximum value over that set; achieves its maximum and minimum over

compact set. Compact we saw already was nothing, but closed and bounded set of course we

have assumed that V is continuous, only continuous functions are guaranteed to achieve their

maximum and minimum over compact sets.

So, so we are now back to our case where x has many components it is a element in R n. And

we are now looking at what is outside the ball B d and contained inside the ball B epsilon

inside the closed ball B epsilon but it is written R here. So, this is a small typo. So, the set of

all points where the norm of x is greater than or equal to d and less than or equal to R; so,

notice that the boundaries are also included and it is bounded from R epsilon R is equal to

epsilon.

It is bounded by epsilon and hence it is also bounded set. On this compact set this maximum

value is achieved, we really acquire this property that is why the emphasis. And this maximum

quantity itself is negative and hence gamma is positive. So, the over this compact set the

continuous function on the set that continuous function is V dot of x that depends

continuously on x.
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So, since it is we require this property of gamma greater than 0 and that we will use to arrive

at the contradiction that we are looking for. So, now, integrating both sides we see that V of x

of t is nothing but V of x of 0 plus this integral from 0 to t of V dot of x tau d tau. Now this

particular quantity itself is, less than each at each time instant this quantity is less than or equal

to gamma. And hence we will integrate this and this becomes V of x of 0 minus gamma t;

yeah, recall that gamma minus gamma was equal to the maximum of this.

And hence we are integrating something instead of this V dot we are going to replace V dot

by the maximum value that V dot can achieve. And hence this quantity to the right hand side

will end up becoming larger; why would it become larger? Because instead of V dot we have

done some manipulation by replacing something that can be larger; gamma is the minus



gamma is the maximum value that V dot can be over that set. And hence we have integrated

with respect to time of minus gamma and we get minus gamma t here.

So, what we have computed is, at any time V of x of t is less than or equal to V of x of 0

minus gamma t where recall that gamma was equal to the maximum, minus gamma was equal

to the maximum of V dot over that set and we also concluded that gamma is positive. So,

now, notice that this right hand side, how does it behave as a function of time? This itself is a

line.
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With t as independent variable this quantity, gamma is some positive number and hence this is

some line with negative slope with slope minus gamma. Hence it is decreasing like this is V of

x of 0 at t equal to 0.



We get this value and hence this is where it starts. And our conclusion is that V of x of t itself

is always below this line, this line itself becomes negative for some time this has value of time

depends on the value of gamma, but it is guaranteed to become negative. And hence this V of

x of t which is what we have concluded is below this line, will also end up becoming negative

yeah.

So, coming back to this particular slide V of x of t is less than or equal to this particular

quantity this line and this line itself becomes negative. No matter what V of x of 0 is, no matter

what gamma value is, because gamma is positive this is some line that is sloped downwards.

And hence there is some times in t form with this quantity becomes negative and this quantity

which is further less from this will also eventually become negative fine. Hence V of x of t also

becomes further negative for that time onwards does this set.

So, what have we concluded? V of x which was guaranteed to be positive has ended up

becoming negative. This is a contradiction that we have finally, obtained does this set d less

than or equal to norm of x less than or equal to epsilon the set of one such x cannot be

invariant that is a property that we used. And our assumption that c greater than 0 has ended

up causing such a contradiction what contradiction; V of x of t eventually becomes negative

for some time for some finite time t onwards.

So, since c greater than 0 has been ruled out, we have now concluded that V of x of t

converges to 0 as c tends to infinity. And hence x of t converges to 0 also this proves

asymptotic stability ok.
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So, this completes the proof of the Lyapunov’s theorem on stability and asymptotic stability

just some more notation. So, function V that satisfies V of 0 is equal to 0 and V of x is

positive for all nonzero points for all points x naught equal to 0; such a function V also called

positive definite.

So, in this new words we can replace Lyapunov’s theorem that the origin is stable if there if

there is a continuously differentiable positive definite function V of x. Such that V dot is

negative semi definite and if V dot is negative definite, then that origin is in addition to stable

also asymptotically stable.
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So, its important to note that the Lyapunov’s theorem are only sufficient. If there is such a

continuously differentiable function satisfying these properties, then we can go ahead and

conclude that the origin stable yeah. Let us see this failure of a Lyapunov function to satisfy

the conditions for stability in the Lyapunov theorem. If some Lyapunov function fails to satisfy

those conditions it does not mean that the equilibrium is not stable. It perhaps it means, that

the stability property cannot be established by using that particular Lyapunov’s function

candidate.

So, we will call it a Lyapunov function only if it satisfies the properties, if you have a

candidate that fails to satisfy those properties, we cannot go ahead and conclude that the

origin is not stable because it does not mean that. It perhaps means that that candidate is to

blame that candidate may not be the correct function. And we might we should perhaps with



looking for other candidates which will satisfy the conditions that are stated in the Lyapunov’s

theorem for stability.

So, before we go to some more results about Lyapunov’s theorem not just for locally stable,

but globally stable we should draw a figure of how this Lyapunov’s function is helping.

(Refer Slide Time: 37:39)

This is our x this is V of x. So, we want to now conclude that all points are all the arrows are

directed towards the origin, we are able to do this by the existence of some function V. So,

this function V is positive that is why it has to always lie about the graph about the x axis. And

here because the directions are always directed towards the origin it turns out that. This

function V itself when differentiated with respect to time is always decreasing yeah.



In other words, if you are able to find a function V that is decreasing as a function of time if it

is decreasing strictly and the function itself is positive. Then the only way it can happen is that

that particular equilibrium point is asymptotically stable yeah.

So, it is not possible that there is such a function which is decreasing which is decreasing

strictly along the trajectories and is itself positive; is equal to 0 only at that point that function

V. If such a function exists it is not possible that this particular equilibrium point is unstable it

is guaranteed to be asymptotically stable, this is what the Lyapunov function says. We can

take one very simple example for this purpose.
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So, consider suppose this was our dynamics x dot is equal to f of x in which graph of f was

equal to like this yeah. So, here is some function. So, we know that if V if f satisfies this. So, it

is important to note that in this example we are plotting f versus x while we are actually going



to construct the Lyapunov function which is also positive except at the point x equals 0 and

rate of change V with respect to time V dot is required to be negative.

So, this dot all our by convention all the dot signifies rate of change with respect to time, f is

itself a function of x. So, consider integral from 0 to x of f of f of y d y it is customary to use

different variable here and here yeah. So, this particular function can we say that this is

positive for this particular graph? What does this particular function signify? It signifies the

area from here to here yeah.

So, it seems like this graph for x positive this graph is lying below the x axis. And hence this

greater than 0 is not satisfied. The negative of this function seems to satisfy this property what

property? It is for x greater than 0, this area is has the sign that the areas negative, area under

this function f. For x greater than 0, this because this function lies below the x axis, the area is

negative. And after putting this negative sign this quantity is positive at least for x greater than

0. For x equal to 0, it is the integral of some function for the width 0 and hence this equal to 0

for x equal to 0.

What about for x negative? For x negative we will instead consider the integral from x to 0;

from x to 0 this particular quantity has positive area. And hence from 0 to x it has negative

area but so, after this negative sign has been put this again this one is satisfied. So in fact, this

greater than 0 satisfied for both x less than 0 and for x greater than 0, only for x equal to 0 it is

equal to 0.

So, perhaps this one will serve as our Lyapunov function candidate, it is some function which

is positive for all nonzero x and is equal to 0 for x is equal to 0. So, we will now show that this

particular Lyapunov candidate indeed serves the satisfies the properties of Lyapunov function.
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So, V of x is now defined as integral from 0 to x of f of y d y. Now what is the next thing? d

by dt of V of x is now equal to derivative of this with respect to x and then that so, so, this is

nothing, but del V by del x times d by dt of f of x; del V by del x times sorry this is equal to del

V by del x times x dot.

Because this is a composite function, V is a function x which is itself a function of time to

differentiate this quantity with respect to time, we will first differentiate V with respect to x

and then differentiate x with respect to time. And of course, V is a function of only one

component x in this case. So, this partial derivative could also be replaced by ordinary

derivative. So, this is d by d x of V of x times x dot is nothing, but f of x.

So, what does it mean to differentiate this particular function with respect to x? Here is a

function, which is growing with respect to x growing at what rate? Precisely this f y when you



differentiate such a function with respect to the endpoints. Then we get precisely the quantity

that is inside sorry we had a negative sign in our definition of Lyapunov function, that negative

sign is really crucial. So, this is nothing but minus f of x this is the rate of change of V of x

times f of x. So, we have finally, concluded that, V dot of x is equal to minus f of x whole

square.
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And recall that f of x graph that was drawn was like this. The graph indicated that f was equal

to 0 only at the equilibrium point x equal to 0. What are all the equilibrium points? x equal 0

only. Only at that point f is equal to 0; which means that that is the only i that is the

equilibrium point for this interval that we have drawn the graph is an isolated equilibrium

point. And hence this particular quantity is less than 0 for x nonzero yeah. Since f of x is

nonzero for all nonzero x this particular quantity is less than 0; is strictly negative.



So, here is a function V which is obtained as the integral of another function. Hence it is

automatically continuous continuously differentiable; also and it is positive we already saw its

rate of change is negative. And this proves that this particular equilibrium point is

asymptotically stable. So, this is one way in which without knowing the precise formula for f

by just using the property that f was positive for x less than 0. f was negative for f for x greater

than 0 by using just the continuity property of f, itself we have been able to show that this

equilibrium point is in fact, asymptotically stable equilibrium point.
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We could take another example with two dimensions consider x 1 dot is equal to x 2 and x 2

dot is equal to minus x 1 minus x 2 yeah. So, rate of change of x 1 is just equal to x 2 rate of

change of x 2 is equal to minus x 1 and also some d times x 2. Where b we will assume is



positive. So, this is an example of a pendulum with friction. So, we will see this example in

more detail, when we consider relaxing the conditions in the Lyapunov’s theorem.

Or at least this particular example we will use and check whether this is whether the

equilibrium point is stable and asymptotically stable. Of course, this is a linear example, we can

write x dot is equal to a times x yeah. And one could in principle find the eigenvalues of this

matrix and already conclude that all the eigenvalues are in the left half plane, but that is just

one way of doing it. We will now use the Lyapunov function argument for proving that the

equilibrium point is stable.
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So, take on the Lyapunov function, it requires some effort to guess to guess a candidate. From

physical exam for physical systems it is possible to take the actual energies and sum them up.

But for more general systems, it requires an effort which can come with experience of how to



guess a Lyapunov function candidate. And then try to show that it is stable why because, if

one candidate does not serve the purpose it might require some effort to guess another

candidate. And still succeed in showing that the equilibrium point is stable or asymptotically

stable.

So, here we take this particular candidate d by dt of V of x is nothing but delta V by delta of x

times f of x f of x is nothing, but x dot. So, partial derivative of V with respect to the vector x

is nothing, but del V by del x 1 del V by del x 2 times x 1 dot x 2 dot. So, the partial derivative

of this function with respect to x 1 is nothing but 2 x 1 partial derivative of this particular

function with respect to x 2 is nothing but 2 x 2. x 1 dot was equal to x 2 yeah let us see this

previous here. x 1 dot was equal to x 2 and x 2. We will write as minus x 1 minus b x 2 minus

x 1 minus b x 2.
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Upon evaluating this particular we get 2 x 1 x 2 minus 2 x 1 x 2 minus 2 b x 2 square; this is

what we get as equal to b dot x. So, we can cancel this and this and this is nothing but minus 2

b x 2 square by a. Since we are assume that d is positive this particular quantity is less than

less than or equal to 0 for all x 1 and x 2. It turns out that x 1 does not appear at all, in the

definition of this in V dot of x.

But in any case for all x 1 x 2 this is less than or equal to 0. And also we forgot to verify that

V of x itself which is equal to x 1 square plus x 2 square is greater than 0 for all x; for all x 1

and x 2 except of course, except 0 comma 0. Except when both components are equal to 0,

except for that that case this Lyapunov this particular function is positive. So, in other words it

is a positive definite function that is why it is a candidate. And we have in fact, checked that its

rate of change is also non positive it is less than or equal to 0 for all x 1 x 2.

And hence the equilibrium point for that particular dynamical system is a stable equilibrium

point. That is all we have been able to show what have we shown, that this particular function.
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x 1 dot x 2 dot is equal to f of x given by x 2 minus x 1 minus b x 2 for some b greater than 0.

This particular systems equilibrium point is the point x 1 and x 2 equal to 0 both equals 0 the

origin that equilibrium point we have shown is stable. Because we have demonstrated that

there is one Lyapunov function, whose rate of change is always non positive.

So, does that mean that this is not asymptotically stable? Let us check that matrix A we had

got was equal to 0, 1 minus 1 minus b. And now when we do s I minus A determinant we get

s times s plus b plus 1 is equal to s square plus b s plus 1. So, here what are the roots of this

particular equation? These are some two points whose product is equal to plus 1.

In other words they both have the same sign, moreover their sum is equal to minus b yeah. So,

the roots are nothing but s equal to minus b plus minus b square minus 4 ac b is nothing but b



square minus 4 over 2. So, the sum of the two roots is equal to minus b yeah and the product

is equal to 1. So, these are some two points on the unit circle.
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How do the two routes look? It is a two points on the unit circle. So, they are to be conjugate

pairs, the product is equal to one and their sum is equal to minus b. Because the sum is

negative they have to be on the left half of the complex plane, they cannot be on the imaginary

axis also because then the sum would be equal to 0.

So, we know that the matrix has eigenvalues in the left half complex plane; as a result they are

either here and here or they are here and here such that the product is still equal to 1

depending on the value of b. So, here are two points which are both in the left hand complex

plane. And hence we know that the origin is asymptotically stable, but our Lyapunov function

candidate only helped us to prove that the origin is stable. We were not able to use that



particular candidate to show that the origin is asymptotically stable, we will resolve these

issues in the next few lectures.

But it is important to note that the Lyapunov theorem is only a sufficient condition, if we were

able to find a V that satisfies those properties; then we can go ahead and conclude something

about stability or asymptotic stability. If V does not satisfy those conditions, perhaps we

should spend some effort on finding another V or there is a possibilities are the equilibrium

point is indeed unstable for that also we will see some conditions on V ok. These are the

things that we will cover in the following lecture.

Thank you.


