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Stability Analysis and types of stability

Hello, welcome to this week 6 lectures on Linear Systems Theory. So, last week we had done

lots of analysis about equilibrium points, we did not define properly the notion of stability, but

several characteristics of those equilibrium points; why are the phase space, Gave us some

information whether the trajectories around the equilibrium point were coming back to the

origin or going away from the origin or the equilibrium.
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So, today we will give a formal notion of stability. So, of course, we will do mostly in the

linear setting and in general, in the time varying setting . I will start with the following

unforced system, I mean I will not talk of inputs as yet from x dot equal to A of t x t with a

certain initial conditions and x is in general coming an n dimensional vector. 

In the previous control course, you would remember stability or one way of verifying stability

is to look at the poles of the system and then you had several characterizations of the poles

being to the left, to the right on the imaginary axis repeated on the imaginary axis and so on.

All this came from a bit of input-output notion of stability right, and the condition to verify or

the way we derive the pole base condition for to verify stability, comes actually from what is



called as the absolute integrability of the impulse function, of the impulse response of the

transfer function.

We will not revisit those things. If you are interested, you can just go back to one of my earlier

lectures that is listed here, just to get a little warm up on the BIBO notion of stability, what

was the bounded-input bounded-output notions of stability.

I will not elaborate that but here, what we will essentially focus is on the state-space stability,

more related to the kind of solutions we computed for the system of linear equations starting

from the concept of a state-transition matrix. 

So, for this class of systems what we know is that the solution is well, given by x of t is phi

which is the state transition matrix and an initial condition. What we also know is that, x star is

an equilibrium point of the system if it satisfies A x star equal to 0. And in most linear cases,

the you know the origin x star, the 0 vector is an equilibrium.

It is always; even if the a matrix I mean is not invertible say, if it is of this form still 0 is an

equilibrium there could at some point of time we will, multiple equilibrium. Say this is an

equilibrium point the origin maybe, somewhere this is also an equilibrium point.

So, the line joining these 2 points is also will this is any point between these 2 points or the

straight line joining these 2 points will also be in the equilibrium. So, we will have essentially

an equilibrium subspace. That is what we talked about in one of those conditions in

equilibrium in previous week’s lectures.

So, fairly we will just in generally, denote the notion of equilibrium as x star and mostly we

will deal with the origin. Even if the origin is not the equilibrium; we can shift, change the

coordinates or shift the origin. Slightly different than the non-linear case because ok, there we

possibly we will not have an equilibrium subspace, but we will have, say isolated equilibrium

point say equilibrium point here, equilibrium point here, here and so on.



And each say, if maybe the phase space goes something like this, sorry it could go this way

right this and this. So, this is a stable equilibrium these 2 equilibriums could be unstable and so

on. So, we have what they also called as call as isolated equilibrium points.

But for us, we will just assume that or we know that origin is the equilibrium and that will be

the equilibrium of interest. But just to for notational purposes we just call it generally as x star.
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.

So, the first definition of stability, what does it mean? Again, I am looking at stability is always

defined with respect to an equilibrium x star. So, an equilibrium x star of the system x dot is A

t x and I just for ease of notation I just drop the time argument for x is stable if for all epsilon

greater than 0, there exists a delta which is a function of this epsilon, such that if I take the

norm. So this is the solution, right?



How the solution trajectory moves? Phi t 0 x 0 will give me the solution, the norm of this

solution minus x star is less than 0 whenever x 0 minus x star is lesser than delta. We will

come to this right where does the epsilon come from, where does the delta come from, in

some cases, you also have that the delta is depending on the initial condition and in this case it

is not depending on the initial conditions, so, it is usually called as the also referred to as the

concept of uniform stability ok.

So, we will we will drop this t naught for the moment and we will say well, this we are just

dealing with a uniform stability, ok. A slightly milder version of this to give you an intuition of

what this what the statement means or a little understanding.

x star is stable if for all initial conditions, for all initial times the map t from x t right, which is

given by this solution. This is my solution is a is a bounded map for all times t greater than or

maybe even with equal to t 0. Essentially, it means that phi or this solution x of t ok, so it is a

bounded map. So, it means the values of x never go unbounded. So, if I were to just draw a

little picture this could be solutions, whatever and so on right.

So, these are all bounded. Now, what does what does this actually mean? Ok. So, let us see a

pictorial version of it ok.
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So, I start with the x star as my equilibrium point here. Let this x naught come from a delta

ball essentially a delta ball would been a ball centred at the equilibrium and of radius delta and

take any initial condition so, I have this delta ball and take any initial condition within this delta

ball, this x naught.

So solution will so, if a if I just see this dotted line, the way it goes its always confined to this

epsilon ball of radius, no this is epsilon ball is again the ball centered at x star and of radius

epsilon, ok.

So, if I just move this picture 90 degrees, it would look something like this. Ok I will try to

draw it as an as neatly as possible, say somewhere I will just use this red color for the delta

ball. So this is my delta ball and I will I will come back to blue. So, what does this mean of?



Ok,.I start at some initial condition here, and as time goes by I am just within the solution is

just within the cylinder it could be go here, go here and so on.

But it will never breach this cylinder right, so it will just move along the cylinder. So, it is here

I am actually even adding time axis. So if I tilt it, so these solutions we will just move along

the cylinder which is in this in this represented in green, ok. So, essentially it means that the

solutions do not go like unbounded.

So for example, if just say, I started initial condition here and just keeps going this way, this is

an unbounded solution and this is un an unstable behaviour, right. So, this is a very basic very

weak notion of stability that this could just be doing whatever the solution could just be doing

whatever they want. 1 simple example is the linear oscillator that we did, right. So, it just

keeps on oscillating this always stable right.

So, that is what this says, right. So whenever the initial conditions are in a delta ball the

solutions will be confined to an epsilon ball or that the solution or this map t to this to the

solution space is always a bounded map, right. That is what is this a very loose or the basic

definition of stability. What is unstable? There is only 1 definition whatever is not stable is

unstable.

So that is the only definition of unstability, you do not really check how the solution goes to

infinity are they doing whatever and so on. So, whatever is not stable is unstable ok. So, that is

that is the only definition of a system being unstable, ok.
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So, just to give you a little very basic seemingly trivial illustration of what is happening in this

in this picture.

So let us start with this a second order system x 1 dot is a minus x 2, x 2 dot is a x 1 and so

on. show that the equilibrium is stable. So, is easy to verify that 0 comma 0 is an equilibrium.

Let us first compute the solution right, I am just let us for simplicity assume that the initial

time is 0.

So, let x naught be the initial condition, that the state transition matrix will be know how it is

computed this way, I do not, I will not go into the steps of this, but by now, we know how to

compute the state transition matrix.
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So, given any initial condition, x naught which is two-dimensional vector, x 1 naught or x 2

naught, the solution will look something like this, ok.
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Now, given x star which is just the origin, what I would want to evaluate is check for these 2

inequalities right.

If the initial condition is within a delta ball or the solutions within a an or an epsilon ball or an

solution always bounded, ok. So, let me compute this norm, right. So, this could be 2 norm or

infinity norm or whatever, because we know that all norms infinite dimensionals are

equivalent. So, give me 1 norm, I can always find an isolation with the other or I can always

bound it with the other norm.

So, it does not really matter which norm we choose, but for our purposes we will usually you

know look at the 2 norm, ok. So this well, x star is 0, so, this turns out to be just this x



naught,. Now the solution phi t x naught minus x star. So, this is computations become easy,

right. So, if I evaluate the 2 norm of this solution, it again turns out to be x naught.

So what does it mean, is that well the initial conditions, so the delta. So this, I found a bound

to be x naught, but actually I found it actually to be equal to x star. So, this is also x naught,

ok. So, let us take a trick to verify or to understand what this means, what we know is the

phase space, the phase space of this systems are concentric circles, ok.

So, let me say I take this initial condition x naught. So, this will be my delta ball, ok. Now

where when the solutions move? Well, the solutions will move along this circle of radius delta,

right. Along all this now this is also equal to epsilon and that is what that is what I mean when

I draw these 2 pictures I start with the initial condition at this point. So, this is what was my

initial condition.

Then the final conditions will also be or the solutions will just be circling around this again of

the same radius . Further, if I say what if my initial condition is here? So, I will have a new

delta let me call this delta prime and my solutions starting from here with some initial

conditions would just be circling around here, ok.

 So, they never go unbounded right, so that is the idea here. So, I can just say take a larger ball

like this, start from initial condition here and they will actually the solutions will just be inside

this, ok. So, very nice and the trivial example, but it gives us a nice understanding of stability.

It is easy to check that this system will have complex eigen values and so on as a as exercise to

check if the system is or an example for instability just check for this matrix and then try to

compute the epsilon and delta values and you will find that this will not actually not exist. So,

you will not be able to bound this by some number from the above, ok.
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So, I will not really do that verge example of instability because that that it should be easy to

check. And this is like what I proved here is I can just check that for every delta greater than

blah, which is x naught there exists and an epsilon which is x naught and hence, the system

satisfies the definition of stability.
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Now what next? I really do not want systems which are I really do not know where they are

going, but they are just bounded. I want something stronger, right. So, stability I would rather

want my system to come back to its equilibrium or its steady state position when it is subject

to initial condition or there is slight perturbation in the system.

Now how do we mathematically define that notion? And that notion is the notion of the

asymptotic stability.
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So, the definition states the following. So we will first read the statement and then try to

interpret that. the equilibrium again x star of this system is stable if again, so all this epsilon

delta exist as they would for. So, the basic definition of stability should be satisfied. Now

additionally, on top of that, an equilibrium x star is asymptotically stable.

2 conditions, 1 if it is stable, and second as t goes to infinity, x of t should tend to x star which

could be the equilibrium in this case, for all initial conditions, right. So, let us see what is what

is new here, first is so it means that as t. So, suppose I am I am here, so this is my equilibrium,

I say I will start from any point, I should actually eventually come back to this point.

I can come back this way, I can come back this way depending on the nature of the

equilibrium point. So this is this is what it means. Now why do I superimpose a statement

saying that stability is also a necessary condition? Why is it not always obvious that at t is



equal to infinity, I am going to the origin? So, why should I additionally on top of that check

for stability?

Let us do an example of that. In the linear case it might be obvious, but there might be some

classes of systems which would behave very strange ok. So, let us do an example of this.
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.

So I have this system x dot equal to x square and let me say that x at 0 is 1, right. Now what is

the solution to this? This the solution turns out that x of t is 1 over 1 minus t, ok. So,me

strange thing will is likely to happen. So, at t equal to 1, my system will say, start at say x 0 is

1 it will have, it will just blow up right.



So, the value is its not defined for t equal to 1 and you might think that well it will actually

come back after a t equal to 1 plus and eventually, if I apply the limit rule what happens as t

goes to infinity this might actually come back to 0, right I just draw slightly better, right.

Now is this a stable behaviour? Well, this is not, right. Because the solutions actually go on

unbounded. So, what was the definition of stability that whatever the solutions do? They or

just they should just be bounded by above from some by some number, ok. This typically

could happen in some non-linear systems and this phenomena where at t equal to one the

system goes up is a called the finite escape time.

Phenomena not usually or almost never seen or never seen in the case of linear systems and

therefore, to have a general notion of stability we may have to impose this extra condition that

first I need to check for stability and then I need to check what happens to the solutions as a

time progresses, what happens asymptotically to the system?
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So, I what does that mean? pictorially, I think they should now be like kind of kind of easy to

visualize now right. So, if I go back to drawing the cylinder diagram, I start from very initial

condition, I think that is nice way to look at it is it just comes back to the equilibrium position.

This is the equilibrium or x star, this is with time ok. So, similarly here, I start with here and

somehow I just say that at so this is at t equal to as t goes to infinity, I come back to x star.

So, that is a stronger condition to check right. So for example, is this system asymptotically

stable? Well the answer is no. The system is not asymptotically stable. Is it stable? Yes. So,

first thing, which is a larger set? the earlier system was stable, but not asymptotically stable.

So, asymptotically stable is a bigger this is a restriction on it, right. So, this will be

asymptotically the set of asymptotically stable system, it is a stronger condition. So, not all



asymptotically stable systems are stable systems, but not all stable systems are asymptotically

stable systems.

So, it is like if I were just to say asymptotic stable and stable all asymptotic stable systems are

stable, but all the stable are not asymptotically stable systems. Just a little counterexample to

that is this what we saw just now.
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So, let us do it again seemingly simple looking example, if I just want to ask you to compute

the state-transition matrix, it is a solution it will just be like by-heart right, because it s in the

diagonal form and then the e power e t is easy to compute.
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.
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Let us say, I start with certain initial condition x 1 naught x 2 naught. Again, for simplicity I

assumed t naught is 0. First, can I check for stability? That will be easy to check, right. So, this

is my the delta ball this will be how the epsilon ball would look like. So, the first 2 conditions

will tell me that the system is stable.

Now how do the, so I can actually find the upper limit of this right, so I will just leave that as

an exercise, but what look at this expression here, what happens it as 2 time, 2 terms which

are you know exponentially decaying, right and therefore, yeah if I put the limit as t e goes to

infinity, I will just end up here right.

So, limit t tends to infinity, phi t naught x naught is the origin which is the equilibrium of

interest.



Again, simple example, but good enough to verify what is what is happening here.
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Is that are we happy when we say this? This is just the statement which concludes that the

system is first that the system is stable, and second that this system is also asymptotically

stable, right. So, just repeating that and writing down there firmly.
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So, are we happy with this? Well one may ask how fast are we coming to the origin? Or how

fast are we converging to the equilibrium point?

So whenever I say origin, it is also means it also means the equilibrium point. So, these things

will be used interchangeably origin the equilibrium and so on. So, I would also want my

system say for example, it takes forever right, if it is a very heavily dammed system, maybe the

response is very slow. And therefore, I would also like to see what is the rate of convergence

to the equilibrium point?

And that therefore, I need to define further a stronger notion or do I can I quantify the rate of

convergence? And that is where it comes in the notion of exponential stability. Ok what does

it mean?
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Again, the basic thing is to look at the definition of a stability; ok, when is the system

additionally exponentially stable? Of course, first I should check if it is stable or not and then

there exists 2 constants alpha and lambda such that something like this holds.

Ok what does this means? Say suppose, I have a solution which starts from initial condition, it

goes whatever like this, like this and maybe eventually goes to the origin. Now, exponential

stability would mean can I actually bound this from above by an exponentially decaying curve?

Right so this is this is a exponential decay, right.

So, if my solutions are always under an exponential curve then this is called an exponentially

stable system. Mathematically, well this is an my solutions. So, this is my solution is bounded



by an exponential function. Right, this is exactly what is written here, right. So, this is this will

be called the decay rate and so on right, ok
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So, I can just write down a picture which looks like this, but I think it is easier starting from

what we know earlier, it is now easy to interpret this picture.
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Again I come back to this to this system. 
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.

Now, I want to verify if this exponentially stable and then if it is exponentially stable, what

could be the values of this alpha and lambda? Ok I will I will again skip the initial condition

skip the you know, the little computations. Again, t naught could just be the t naught equal to

0, ok.

So, again this is this is from previous so what does the solution satisfy? Phi t x naught minus x

star is just bounded by e power minus t. So, it decays at a rate of lambda equal to 1. So, this 3

steps can be can be easily verified. I am just computing the 2 norms here. So, that should be

easy. Now, so far, well we know that this is stable.

Something inside could be asymptotically stable, it is a smaller subset and exponential stable is

even a harder condition to check right. So therefore, this is the strongest condition to check

would be that of a exponential stability. So, stable is just is a bigger set, asymptotically stable

systems are stable, exponentially stable systems are asymptotically.



So, now relation between asymptotically stable and exponentially stable. All exponential stable

systems are asymptotically stable; but are all asymptotically system asymptotically stable

systems exponentially stable? Well, it turns out in the LTI case, which means the Linear

time-invariant case, exponential stability and asymptotic stability would actually make like

coincide, right. And we will do a proofs of this.
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So I just conclude today by just introducing to you the 3 notions of stability. The basic

definition of stability, asymptotic stability is a stronger version and something which also tells

us the rate of convergence is the is exponential stability. now given a system, now how would

I verify stability? Say I am given system in R 4.

Now, can I all the time compute the solutions? Compute the constants? Alpha, lambda and so

on or compute various norms that may not always be easy. Now are there effective

computation tools which will help us verify stability of systems?

Similarly, in the transfer function case we do not really compute the check if the impulse

response is absolutely integrable or not, right. We just translate that to an easier way of

verifying which is with respect to the poles.



Similarly, in the state space methods, we will next look at the notion of Lyapunov stability and

identify tools which will help us verify stability certificates for LTI systems. Again, much of

the tools that we will use will come from week 2 and week 3 lectures of linear algebra and of

course, a part of week 4 and week 5. So, that will be coming up in the in the next lecture.

Thanks for watching.


