
Image Signal Processing

Professor A. N. Rajagopalan

Department of Electrical Engineering

Indian Institute of Technology, Madras

Lecture 31

Shape from focus- Focus operators

(Refer Slide Time 0:27)

So there are no other equations, so we will move to the focus operators. So all the way we

have been assuming that this plot this focus measure plot that I have been indicating. So I

have been assuming that there is some operator which will act and give me a sense of

sharpness.

(Refer Slide Time 0:42)

So this focus operator is something sp focus operator is in fact, so they will give you a sense

of sharpness. In fact, these are other than this depth business that I have been talking about. In

fact, these focus operators are constantly being used in all your cell phones by the way. So

when it goes into that hunting mode, I mean you say autofocus, how does it know that

something is in focus? How does it know what lens setting is ought to be brought into focus,

how does it know that?

So when you say autofocus, what it is actually doing this, it is capturing a bunch of frames

just as we are doing here, but then it is capturing it very fast. We do not even see all of that

and we do not typically have access to those images, but you can do something to actually

access them. But normally, we do not get to see any of that so it tries to move the lens.

And at that time, it does not care about the parallax and all that, because auto focusing is not

about estimating depth and all. So all that it does is captures a bunch of frames, moves your

lens, captures a bunch of frames, and then it knows that and then I know it runs a simple

focus operator.

Again, each company has its own way of trying to sense the sharpness and then as it runs, this

focus operator quickly and where does it run typically in the center. So it assumes that the

central region is what we are interested in, so it runs right a quick focus measure operator

tries to get a sense of where things are coming into focus or it knows that that is lens setting

that it needs to use.

So this is called hunting and in fact many of these cameras they have different ways of

speeding up the hunting process and all so there is a Panasonic 2017 model GH 5 or

something, I read about it somewhere, Lumix something. So that in fact claims that it is 100

times faster than the other cameras, because it uses something, it uses only 2 frames to kind

of lock on to the it calculates depth actually that is the one of the things that calculates, there

is only one D there is nothing like a depth map.

This computes the depth for the central portion of the scene and based upon that, maybe if

time allows I will talk about it. So I am saying that other than this sense of depth and all

depth map and all that which is maybe more involved, but these things are being constantly

used, I mean whenever you want to get a sense for sharpness and so on, but then nobody

knows which operator is best for what scene that is, like nobody knows.

So there are all these people that have actually I said, that uses but then nobody knows which

one of them is the best. So I am going to list down a bunch of these operators, we will kind of

go through them one by one and you could use any of them, but there is no guarantee which

one of them is going to serve you the best in a particular situation.

So as you would expect, so one of the first thing, the Knave things would be what is called a

point wise operation. See, point wise is normally undependable, it is like saying that you are

only looking at that point and not even around it. So when you just look at a point, it is

typically a grayscale value and all these operators have to be simple.

You are going to have something that is very complex, that is running, which means that it is

going to take time and so on. So if you look at these operators, they are very simple, they will

not do anything fancy. So they do some simple things in order to get a sense for sharpness.

So grayscale value, is one which is simply what we mean by that is simply like look at the

intensity, but then this is seldom used, why? Because of the fact that there is noise and so on,

you would end up concluding something very, very wrongly. So, normally not used but this is

point twice, this is the only point operator really, the restaurant all they do use a the local

information, what is called a neighborhood.

They do not just go by what is happening at that pixel, they also look at what is happening in

and around it. So, second is variance, but variance of course will also require you to compute

the mean. And the mean of course, we will again use a window. So variance of, let us say,

now I am going to write this as x subscript by which I mean that you are at some location x,

y. I do not want to get every time write x, y.

So the x means that you are at a location x, y and what you will do is, you will do something

like 1 by m square where let us say m number of locations are involved and summed over

sum z belonging to a neighborhood of, so this is like window of x, w of x is like the

neighborhood of x and then the value of the intensity, value of the image at that z.

So z again like some x, y sort of location, but which is the neighborhood of x. And typically,

these are all very clean neighbors, 3 cross 3 you do not use some fancy, irregular

neighborhood and all. Typically, regular neighborhood 3 cross 3, 5 cross 5 or something. f of

z minus Mu where of course Mu again will be the mean that we can compute as simply 1 by

m of that neighborhood and square. So variance seems to make sense, because if something is

coming into sharpness then typically a variance will go up because your smoothness is less

and therefore variance makes sense to use. But then this is also not so very often used, but

yeah, but then this is more sensible.

Energy of the gradient or what is called EOG. So, this is like EOG again at x is given as sum

over z belonging to, I mean you can of course use all that 1 by m square and all and use that

average, I may not write it every time, it does not matter because m is the same so whether

you use that or not.

And then it does f square x z plus x square y z, just add the 2. Now, this is normally a 3 cross

3 window over which you are kind of taking these values and this effects and if I read, these

are really this is supposed to be a gradient along x, image gradient along the x direction and

similarly f y is like a gradient along the y direction and we need to have some kind of a

discrete approximation for that because you are on a discrete grid.

Therefore, f x and f y and all we need to have some operators that will be a discrete

approximation of really a continuous differentiation, and all those exist. So, we will talk

about 1 and when we will talk about that you will automatically know how these can be

found out.

So, it simply means that you are computing this gradient, again this also makes sense because

if something is sharp then your gradient will also be higher because your transition is going to

be higher, if something is very smooth then your gradient changes will also be less so. So, I

mean these are all more or less intuitive, so what you would or I would kind of think about.

Then there is something called a Tenegrad, this is based on something called the sobel mask.

If we do edge find and grade that time we look at what is a sobel operator, this is a person is

name by the way Sobel, and this is given as Tenegrad of x is equal to summation. So, this is

the Sobel operator so this gradient computed using sobel and it is given as f x f of z, again z

coming from the window of x square plus.

So the only change between the earlier one and this is that this explicitly uses a sobel mask.

Sobel mask is supposed to be better because it tends to read it tends to add a kind of a

weightage when you do this sort of a different thing you so that is why, none of these may

really matter so much because at the end of the day, it is image quality or the image

underlying activity, that will actually decide.

But delt, this is S x so this will be a kernel like this, minus 1, 0, 1, minus 2, 0, 2, minus 1, 0,

1. So, those 2, is that additional weight because you are kind of looking for something around

this therefore you just give an added weight right along that row, when you are doing an x

gradient. And similarly, when you are doing a y gradient, you do like minus 1, minus 2,

minus 1, 0, 0, 0, 1, 2, 1. I will ask you something, when you saw a blur curve, we said that it

should satisfy certain things and it has certain interesting properties. What do you think is

interesting about these two or these operators I mean Del x?

If I write it this way, what do you kind of notice that is interesting?

Student: Sum.

Professor: Sum, yeah they are actually summed to 0, and why should they are summed to 0?

Student: (())(10:28)

Professor; Yeah, exactly. So what it means is if you have an image in which things are totally

smooth. So when you blur that is what is expected, when you blur, when you are doing an

averaging, what do you do? You actually bring all of them roughly to the same intensity, that

is what averaging will do. You keep on doing repeated averaging, that is where you will

head. So, the idea is that if things are looking more or less the same, then your focus measure

should be such that it should output a low value.

And only when things are rapidly changing inside a local region that is when you want the

this f m to be high, the focus value. So, it makes sense that if you have a situation where let

us say all intensities are looking very similar, that means either it is very heavy blur or it

could also be that the image itself is like that, in either case there is no activity and therefore,

your focus evaluation value should be low, so this naturally sum up to 0 and that is the way

they ought to be.

(Refer Slide Time 11:37)

Then there is something else that is called sum modified Laplacian. Okay, this is what is most

commonly used by the way and this is what Laplacian and I will tell you why it is called

SML. And this is going to work pretty well in the sense that not many mathematically optical

optimal or something, but this is known to work very well.

So, this is like f x so if you look at Laplacian that if you have a 2D grade, a Laplacian is like f

x x plus f y y. So, it is like Dou square f by Dou x square plus Dou square f by Dou y square,

this is what is actually a Laplacian. So, this is called a modified Laplacian and there is also

some tagged along so, I will explain all that to you. So, what is SML operator does is it works

like this, the SML of x is given by again z belonging to w of x and then f x x at z bar and f y y

mod, so the mod is taken and then you take the mod of each of these secondary derivatives

and then you add them.

And of course, as you keep going higher at the order, you will naturally believe that these

have to be more sensitive to any kind of changes in the intensities. But at the same time, they

could also become more sensitive to noise that will also happen, but overall it looks like this

is a good sort of a compromise between the sensitivity that you need versus the ability to add

to sort of handle noise, to kind of say counter noise.

And by the way there are some very interesting papers for those of you who are interested, 2

years ago or something there is a group from Hong Kong that showed that what was called I

think the paper title is remember it is called Just noticeable blur.

I think that is how the main this one, it has a title like that, Just noticeable blur. And there

they show that even with a kind of regular camera if you to take an image to a humanoid it

looks like, everything looks like it is focused. But it turns out that there is a subtle sort of

change and difference is in blur across the image that can all act as a cue for depth and these

guys do a fantastic job of actually bringing all that out. So why I am saying that is these

operators and all, right? Of course they do not do it using this focus operators, they use

something else. But I am just saying that this is what you want from these focus operators.

You want them to be extremely sensitive to any changes in blur because that is what will help

you tell where the sharpness is exactly happening. So anyway, for those of you (())(14:36)

this was from CVPR 2017 or something, or maybe even a little older than that 2016. But it

amazing, we look at those images, to your naked eye it looks like they are all pretty much in

focus, but then they show that it is not the case and you can actually start inferring depth of a

scene just from naturally captured images with a cell phone. And now I will just expand on

this operator it a little bit.

So there is some modified Laplacian, so it is called a modified Laplacian for this reason that a

Laplacian would have simply summed up rate effects, or has been simply a sum of f x x. And

this f y y, whereas in this case, it takes f x x, but then takes the mod of that, right? And f y y

takes the mod and then sum sub the 2 mod, that is the way they call it, that is why they call it

some modified Laplacian. And if you think about it, I mean, suppose we wanted a discrete

approximation, just to start with, we will just do it for this case, f x x what would it look like?

So these are all standard things, but we will just do it here. So a discrete approximation

because finally rate, we need some kind of a kernel that you want to run on the image.

(Refer Slide Time 16:04)

So a discrete approximation for f x x m and f y y, whereby f i mean the image, so I do not

know we have been calling g as the image, so if you look at this is g x x, g y y. Now, all right,

I think g is what I have been using right all along so I will say, g y y. No, no, in those

expressions I think I have been using F, it does not matter use f or g okay f x x, f y y, alright.

So, f x, so the normal, the very standard approximation is take it as f of x plus 1 y minus f of

x comma y. I mean there are various approximation, one very standard base f of x plus 1

minus f of x, y.

And which then means that if we are looking at F x x of x, y then you should kind of be

looking at F x x of x plus 1 comma y minus F x of x y. It will be the f x x, but then f x of x

plus 1, it will turn out that from the first one it will turn out as f of x plus 2, y minus f of x

plus 1, y then what is it, f x of x plus 1. So, f x of x plus 1 and x plus 2 and then minus f x of

x y that is f of x plus 1 y plus f of x y. So, which then means that you get some like f of x plus

2, y minus 2 times f of x plus 1 comma y plus f of x, y. Now, since this is centered about x

plus 1 and not about so like I said that you want to wait at x, y, not at some other location.

And you are looking at looking at finding f x x at x comma y, whereas this is putting more

emphasis that actually x plus 1 than x, therefore, what is standard practice is to replace x by x

minus 1 in this expression so that what you end up getting is x of x plus 1 y, so replacing x by

x minus y in the above expression, that is purely done to in order to give more weightage to

x, y where you are trying to evaluate the second gradient, minus 2 times f of x plus 2, x

comma y plus f of x minus 1 comma y. So, this is in fact a very standard, so if you try to

write it down in a kind of a 3 cross 3 form, then what it will mean is you will have a minus 2

wait here, you will have 1, 1 here and then 0 0 0 0 here.

So, this will something like Dou square by Dou x square or what they call as f x x. And then

along y, you can similarly show that if you do the same thing along y, you will end up with

this what is it, 1 here, minus 2 here, 1 here and 0 0 0 0 0 here. And a standard Laplacian when

you write Dou square f which is a Laplacian that is f x x plus f y y, a Laplacian typical

symbol is this.

And then if you add these two kernels, then what happens is what you will end up getting for

a typical Laplacian is minus 4 1 1 1 1 and then 0 0 0 0, so this is a standard sort of a discrete

approximation for a Laplacian kernel, but what we want is actually a modified Laplacian, but

this is what is really a Laplacian kernel, the simplest approximation that you can make for a

Laplacian kernel.

So again this will also add up to 0 and all that because this is also supposed to give out a

value which will be low is if all the intensities are similar looking, and high if there is a lot of

activities, all of that this will also follow. Coming back to that modified Laplacian, so what it

actually means is that you if you go back to that thing, so what you had was this one.

(Refer Slide Time 20:37)

So where is that?

(Refer Slide Time 20:42)

So see if you see here, so this is F x x, so F x x, so what it will mean is so you will replace it

with this kernel, it will be minus 2 1 1 and then 0 elsewhere. Then, so this will be a kernel

that will be, so the way they operate is like take these individually, and then operate on the

image to get the gradient, and then take the absolute value, then again take this kernel, it

operated on F, which is like doing a simple convolution operated on F, and then get the

second gradient along y, and take the model S of that and then add the 2.

So, ideally you will get one array that comes out of this, one array that comes out of this,

another array that comes out of this, you are just taking the mod, of course after you take the

mod you will get these two arrays and then you just do this adding of those values to get

another array that will that is supposed to give you the value of SML at all locations.

We will talk about the implementation a little later, okay. So the way we actually implement

is like we do not go like take one pixel at a time and then do this, we would rather operate on

the whole grid at one at one go, because doing a convolution is fast, we just operate in one

go, get all the values and then do all these local things.

(Refer Slide Time 22:22)

Then there is one more operator, let me also write that down. This you may be familiar with

what is called a Laplacian of the Gaussian what is called log. Log of x, so summation again z

belonging to w of x log of anyway, so I am not writing this. So for those of you who are

interested, you can find out, again, it is a sort of a convolution.

So what it will mean is, did we talk about how to I think, you know what, we did that. So, if I

gave you a sigma, then we know that how to actually have a kernel for that a discrete kernel.

So Laplacian of the Gaussian is like you have a Laplacian kernel, which I showed you just

now. And then you have an image. So log of the Laplacian of the Gaussian is like, you take

the Gaussian kernel, blur the image first with that kernel and then apply this operator

Laplacian which is then going to convolve.

So, first is a convolve with the Gaussian, so it means that it is going to probably blur that

image a bit and then on that you operate a Laplacian kernel. There are also direct kernels that

can give you the log itself directly, but the simplest way to think about is blur first with

actually a Gaussian and then follow it up with the Laplacian kernel.

You know how a Gaussian kernel can be written, similarly you know now, how the Laplacian

kernel can be written. So, those of you right over there who just want out of interest to do

something like this, you can still go it, I am not writing those expressions here, because

simply means one kernel for the Gaussian followed by another kernel for the Laplacian.

Then there is something called energy of Laplacian. So this is called EOL of x and this is

given by summation belonging w of x, and f x x of z plus f y y of z the whole square. S if you

see that, this is not the same as we modified Laplacian where you took each one of them

individual mod and added up, here it is like you are just taking like f x x z plus f y t. So all

these, and in all of this right we do not know which one of these, nobody knows for sure

which one of them is most ideal to use and so on.

(Refer Slide Time 24:35)

Let me talk about some part. So it is like this, so modified Laplacian because of the fact that

what you do, so you will take every frame and act let us say you are an operator Dou square

by Dou x square which is this kernel that I wrote down for a second derivative. We will

simply do a convolution with each frame, output will be another frame, so you will get again

another stack of frames if you have to do convolution.

Similarly, you will use the same frames and then you will also do a convolution with Dou

square by Dou y square, which is again another kernel that we have whatever, 1, minus 2, 1

and then the other case is 1, minus 2, 1. So you convolve and then again you will have, let us

say one more stack.

Now, what you do is you take the modulus of this, you take the modulus of all these values,

because that is a way to do it fast, you do not want to travel one pixel at a time and all. So if

we take this modulus, and then if you add them, then we will get one more array or one more

stack, which will have all these ml values. That is called like, mlf if you want to call f of xy,

then all the modified Laplacian values are all actually sitting here and the sum modified

Laplacian looks like this. So, when we say sum modified it, what we really mean is this.

(Refer Slide Time 26:11)

So, when you write SML, suppose I say at f of x, y because finally I want some x, y what is

the sum modified Laplacian value, then what I will do is, I will take it to be ml, now this will

be a double sum over let us say i is equal to x minus n, 2 x plus n and j is equal to x minus n,

2 x plus n, I will tell you what this n is. And then what you have is a ml of f of i , j. So, that is

why it is called a sum modified Laplacian. So, what it is saying is, see you have this array,

you have this stack that you got which is actually ml of f x y, at all x y you have the values

now.

So what it does is, in order to be a little more robust to some noise and other things, so what it

is saying is, it is kind of add up the values in and around your x, y. So for example, if you

take n equal to 0, then it means that it simply takes the ml value right there, and then uses it

as the value for SML.

But normally, what is done is we will take less than equal to 1 or 2 or something, because 1

will mean that it is looking 3 cross 3 neighborhood, adding up all those values. Whereas if it

is n equal to 2, then we will be looking at a 5 cross 5 neighborhood, adding up all those

values in order to tell that but then the point is that you cannot make it too big because you

have a depth that is actually varying, and therefore it will not make sense to take a very large

neighborhood.

So you can either go with n equal to 1 which is what is standard, typically go up to n equal to

2 or something but not beyond 5 cross 5 and all because otherwise you will end up smoothing

your depth plot. So this is again, this is another way of implicitly accounting for noise. So if

there is some variations that you are not able to see pick up, or let us say D bar itself for some

reason, okay? Is there is, if you feel that just trying to get values at one location is going to be

a problem, then you could actually look at a small little sort of a neighborhood, that is why it

is called some modified, so the sum is coming from this sum okay, some and then the sum of

the modified Laplacian values, that is what it means sum modified Laplace.

And then what this will mean is that once you have the some modified Laplacian value, you

can actually plot it for every x comma y now. It will just traverse through that stack and you

have the SML at x comma y coming out from every stack, and then you have that f m plot

then you can actually do this Gaussian interpolation, then you can get your d bar. So if you

use one operator now, the point is right I mean who knows which one is the best and how

does one, so there are a few ways out of that.

