
Applied Linear Algebra 

Prof. Andrew Thangaraj 

Department of Electrical Engineering 

Indian Institute of Technology, Madras 

 

Week 03 

Invertible maps, Isomorphism, Operators 

 

Hello and welcome to this Week 3 of lectures in this linear algebra course. So far, in the previous 

week, we looked at linear maps in a big way. Very importantly, we looked at the connections 

between linear maps and matrices and how we can represent a linear map with a matrix once you 

choose a basis, and how that helps etc. And, we also saw some other properties of linear maps like 

injectivity, surjectivity. We looked at properties of the null space and range space etc. All of that 

is very important to understand what a linear map is. So now we will make a bit more of a progress 

in that direction. In particular, we will consider invertible maps. So what are these invertible linear 

maps? These are special maps. And once a map becomes invertible, a lot of interesting things can 

be said about the spaces which have invertible maps between them. Isomorphism. An invertible 

map is also called an isomorphism. And there are the special types of linear maps which are called 

operators and all these we will define in this class. It’s mostly likely to be a definition oriented 

lecture, but there will be some interesting properties and important ideas in this area that we’ll 

come across in this lecture as well. So let us get started.  
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Okay, quick recap. As before, the usual notation, we’ll keep using the same thing. The vector space 

𝑉 over a field 𝔽. Linear map 𝑇 will go from 𝑉 to 𝑊. It will have some properties. Null and range, 

the fundamental theorem of linear maps will play a very crucial role as usual. Always, it keeps 

showing up. The fact that the dimension of 𝑉 equals the dimension of the null space plus the 

dimension of the range space when 𝑉 is finite dimensional. This is very important. And then we 

saw this connection between mxn matrix and a linear map from 𝔽𝑛 to 𝔽𝑚. And then we saw these 

column space and null, and all these connections between the matrix and the linear map. And 

finally we saw how this matrix vector product and matrix multiplication are naturally defined in 

terms of, you know, operations on the linear map, right? So the matrix vector product is simply 

evaluation of the linear map itself in the matrix domain, and matrix multiplication corresponds to 

composition of linear maps. When you interpret that as a matrix, that's what you get, okay? So this 

is a quick recap.  

So let us proceed by looking at invertibility, isomorphism, operators and all that in this lecture, 

okay? So we will begin with the definition. When do we say a linear map is invertible, okay? So 

the definition is not very hard if you think about it. When you talk of a function being invertible... 

Function usually takes input to output. If there is another function which can take you from output 

to input in a proper faithful way, then you have an invertible function, right? So that's the basic 

idea behind invertibility. Function takes you from input to output. You should have a clear-cut, 

precise correct way of coming back from the output to the input. Somebody tells you - hey, this 

output I got by evaluating that function, you should be able to uniquely find what input it 

corresponded to, okay? So if you can do something like that, you have an invertible map... And 

there is a more precise way of stating it, which is what is given in this definition here, right? So a 

linear map 𝑇: 𝑉 → 𝑊 is said to be invertible if there is a linear map again... We want a linear map 

to be the inverse of a linear map okay, of course, from 𝑊 to 𝑉, from the output side to the input 

side. And such a linear map will be called the inverse of 𝑇, okay? What are the two conditions we 

want? We want 𝑆 composed with 𝑇, or if you first hit a vector with 𝑇 and then again with 𝑆, then 

you should get the identity map, right? And the same should be true for 𝑇 composed with 𝑆. It 

should be the identity map on 𝑊, okay?  

So maybe a picture is in order here to sort of illustrate this, what I mean here. So we will do our 

famous ellipse pictures, okay? So you go from 𝑉 to 𝑊. If you have an invertible map which takes 

an input to an output... This is 𝑇, right? If you go from 𝑉, then this 𝑆 should be a map in the other 

direction which takes you from output to input, that's the thing to keep in mind. So you have to 

have exactly like that, okay? A particular input goes to the particular output, okay, under this linear 

map 𝑇. This inverse linear map 𝑆 should bring you back and the reason why you say 𝑆𝑇 and 𝑇𝑆 

have to be identity is - it has to work either way, right? So you have to be able to go back and come 

back to the right thing. You have to keep closing the loop. So that's when you say it's invertible, 

okay? So this is a very precise, particular definition and you can see why this, you know. 𝑆 

composed with 𝑇, 𝑇 composed with 𝑆... If you have a vector in 𝑉, you hit it with 𝑇 first and then 

with 𝑆, you will get an identity in 𝑉. Likewise if you start with 𝑊 and then you do 𝑆 and then 𝑇 



again, you should come back to the identity map. The same point in 𝑊. So this is a very... You 

know, invertible maps are very, sort of precisely defined, okay? So every point here should go to 

every point there and then the output should come back to the, you know, the inverse should bring 

the output back into the input, okay? So that is the definition, hopefully it's clear to you. I can give 

you… We'll see some examples as we go along, okay?  
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So even before we, you know, see examples and, you know, try to get a feel for what this is, there 

are some nice properties, a couple of important properties which will help, you know, simplify 

some of these examples and thinking and all that. So the first thing is, if you know the map is 

invertible, then its inverse is unique, okay? And that comes about because of the associativity of 

this matrix multiplication or the associativity of the composition, right? And the proof is very easy. 

It's written down here. You can see how it works. 𝑆1 you can write if... So the proof basically 

works by contradiction, okay? So you, what you say is - how do you show that the invertible linear 

map has a unique inverse? You go ahead and assume maybe there are two inverses, right? 𝑆1 and 

𝑆2. And then using the properties of the inverse, you have to show 𝑆1 has to be equal to 𝑆2, okay? 

So that's the strategy for the proof. And you can see how it proceeds. It's quite simple. It uses 

associativity in a fundamental way, okay? So 𝑆1 = 𝑆1𝐼, and instead of 𝐼, I can replace it with 𝑇𝑆2, 

which I know is also 𝐼. And then you put a bracket here, and then, you know, you use associativity 

to sort of put the bracket in the other way, right? So 𝑆1𝑇. And then 𝑆1𝑇 also you know is 𝐼, and 

then you are done, okay? So you see the way the definition is important, why you want both 𝑇𝑆 

and 𝑆𝑇 to be identity. Only then you will have unique inverses. Otherwise you can have multiple 



inverses and it just becomes a bit messy, okay? So if you want a unique inverse? You better enforce 

these conditions, okay?  

So whenever we know that inverse exists for a map 𝑇, we will denote the inverse as 𝑇−1, okay? 

So sort of like the, you know, multiplicative inverse in a usual number domain. So you put 𝑇−1 to 

indicate the inverse, okay? So that's important. Now the other important property about invertible 

maps is - when the map is invertible, it is both injective and surjective, okay? So you can see it's 

one-to-one and everything at the output has to be covered because the map going the other way 

has to take you back to the input, right? So both of them have to be true. And it is also true the 

other way, okay? If you have a map which is both injective and surjective, then it is invertible, 

okay? So both of these are true. I am not going to do the proof in this lecture. There is a detailed 

proof in the book. And also I should point out that just as functions and maps, this is a very 

fundamental property of functions and maps, okay? So injectivity and surjectivity is an if and only 

if condition for invertibility, okay? So this is something important to know, okay? So basic 

properties we have seen for invertible linear maps, and maybe we will see some basic examples, 

very simple ways to come up with examples.  

In fact you can easily come up with very many examples either way, okay? Both which are 

invertible and non-invertible. Actually non-invertible is the easiest to come up with, right? So for 

instance if you know if a map is not injective then you know it's not invertible, okay? So any 

transform whose null space is not exactly zero, right? Any transform whose null space is not 

exactly zero will automatically not be invertible, okay? So it's easy to come up with a non-

invertible thing. So you just pick a, you know, transform which has a non trivial null space, then 

you know it's not invertible, okay? Same thing is true with the maps that are not surjective. If the 

map is not surjective, if the range is not going to occupy the entire vector space, then you know it 

is not going to be invertible, okay? So those are conditions you can easily eliminate, okay? But 

there are interesting possibilities particularly when you go to infinite dimensions. So if you go to 

polynomials, which is infinite dimensions, then all sorts of interesting cases end up happening. So 

for instance I have shown here two examples - one is multiplication by 𝑥2 , okay? So we saw this 

linear map before, okay? Given a polynomial, you multiply by 𝑥2, you get an output. I mean 

everything sort of gets, every term gets multiplied by 𝑥2. You can see some interesting thing - it 

is one-to-one. We saw that it is one-to-one, right? So if you take a polynomial, multiply by 𝑥2, you 

will only get one other polynomial, right? So there is no way to get that in multiple ways. So it's 

one-to-one. But it's not surjective. We saw it’s not surjective, right? So because the polynomials 

with no constant polynomials are not there, linear polynomials are not... All those things are not 

there, so it is not surjective, okay? So it becomes non-invertible. So you have a case in the infinite 

dimension situation where the linear map is injective but not surjective. So it is not invertible.  

So a similar thing can be worked out in another way. You can define this left shift in polynomials. 

What is left shift? If you want to think of what is left shift... So basically if you have 𝑎0  +  𝑎1𝑥 +

 𝑎2𝑥2  + ⋯, a left shift will sort of take, you know... All the coefficients will shift to the left. What 



will happen to 𝑎0? You simply kill it, right? So you just shift it out into nothing. So you get 𝑎1  +

 𝑎2𝑥 + ⋯ okay? So that is the, that is the mapping. So you can see a couple of interesting 

properties here. First property is - it is not injective, right? It's not one-to-one, okay? A whole 

bunch of polynomials which vary only in the constant, right? So a0 alone changes. They will all 

map to the same output, okay? So it's actually many-to-one, right? But it is surjective, right? It's 

clearly surjective. Any polynomial I have I can always go find another polynomial whose left shift 

will be this, right? So I simply have to push this to that side and add whatever constant you want 

you will get it. So here is an example where a map is not injective but it is surjective. So it becomes 

non-invertible, okay?  
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So all these interesting situations are possible in infinite dimensions. In finite dimensions, 

something very interesting will happen. So you will see, we will see that result later on, but these 

are examples. So if you want to come up with examples of invertible matrices, please wait till the 

end of the lecture, I will give you a clear way of how to do it. But right now you can think of 

various ways in which you can create it. It is most useful to think in terms of matrices. How do 

you construct a matrix which represents an invertible operator, invertible linear map is something 

we can think about. So maybe we'll see a couple of more properties and then come up with some 

concrete ideas on how to construct these things. It's actually very easy, once we do that it'll be 

clear. But for now let's hold on for a couple of more slides, at least we know how to come up with 

non-invertible examples, right? So non-invertible examples are easy to come up with. Maybe 

invertible examples just wait for a little while, we will come up with more of them, okay? At least 



one very standard example for an invertible map is the identity, right? So if you have 𝑉 to 𝑉, the 

identity map is clearly invertible. So at least one example we have. More examples we'll come up 

with as we go along, okay?  

So now what are these isomorphisms? So this is a term that is quite often thrown around in math. 

And a little while people say two things are isomorphic. So isomorphism usually means, you know, 

they are the same, okay? In some sense they are the same. So an invertible linear map, in the area 

of vector spaces, an invertible linear map is called an isomorphism, okay? Whenever you can find 

an invertible linear map from one vector space to another vector space, you’ve found an 

isomorphism between the two vector spaces and these two vector spaces are said to be isomorphic, 

okay? So isomorphic basically means similar structure, similar in form, similar in shape, like that, 

okay? And you can see why, right? So if you have an invertible linear map, a map which preserves 

linear combinations, and it's also invertible, so it doesn't matter whether you do any linear 

combination based calculation on 𝑉 or any linear combination based calculation on 𝑊, you can do 

it in whichever place you want and you can always go back, right? As long as you only did linear 

combination based operations, right? It doesn't matter whether you did it in 𝑉 or it did it in 𝑊, you 

can always use this invertible linear map that you have to either go from here to there or there to 

here, and do the calculations anywhere, okay? So in that sense these are isomorphic. So 

isomorphism is very nice in that fashion. Of course it is only for the, you know, linear combination 

operation. If you do some other crazy operation it may not be preserved, okay? But this 

isomorphism is for this operation, okay? So quite often in mathematics as we build up from a basic 

definition, you want to have isomorphism defined immediately. Because then that tells you 

similarity in structure. So maybe you do not have to deal with all the, you know, anything which 

has an invertible map between them, it's not so interesting, okay? So you want to study something 

more which is beyond that, okay? All right, so that's isomorphic.  

So in fact, quite a few vector spaces are isomorphic, okay? So here's this wonderful example. It's 

very easy to come up with. Two finite dimensional vector spaces over the same field 𝔽 are 

isomorphic if and only if they have the same dimension, okay? So it's a fantastic result. A simple 

result which tells you when two finite dimensional vector spaces are isomorphic, okay? All you 

have to do is check this only number, this single number that you have to check. You have to check 

whether the dimension of one vector space is equal to the dimension of the other vector space. The 

moment they become equal, they are isomorphic. If they are not equal, they are not isomorphic. 

You’ve finished, right? So the same thing sort of holds for subspaces also, right? So think about 

it. Subspaces are also, you know, vector spaces like that. So if you have a vector space, you have 

two subspaces, you can also talk about isomorphism between the two subspaces. When are two 

subspaces isomorphic? When they have the same dimension, okay? So you can always find an 

invertible map from one subspace to the other as long as they have the same dimension. Otherwise 

you can't, okay?  



The proof is actually very simple. It is written down here. I'll go through it very quickly, you can 

read it and understand it a little bit more. See, this is an if and only if statement. Any time you have 

an if and only if statement, you have to prove both directions - from a to b and b to a, right? So 

what is the one direction? Supposing 𝑉 and 𝑊 are isomorphic, then I know that there is an 

invertible transform 𝑇: 𝑉 → 𝑊, okay? So what are the properties of invertible transform? Its null 

space should have dimension zero because it’s injective. Its range space should have dimension 

𝑊 because it is surjective, okay? Now you use the fundamental theorem. You see dim 𝑉 equals 

dim 𝑊, that's it okay? So it's a very easy proof to show that if it's isomorphic then the two vector 

spaces have to have the same dimension. It is not very hard to see, okay?  
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What if dim 𝑉 = dim 𝑊, how do you go the other way, how do you show it's isomorphic? Then 

you just do a basis based thing, okay? So you find a basis for 𝑉, find a basis for 𝑊. Both the sets 

will have the same number of vectors, right? So you define a linear transform which maps the first 

basis element here to the first basis vector here, second basis vector here to the second basis vector, 

like that. If you map, right, you have an isomorphism, okay? You can show it’s injective, you can 

show it’s surjective just by definition, okay? So I am skipping the details of that. So this is an 

interesting result. So any two finite dimensional vector spaces with the same dimension are 

isomorphic, okay? So you can extend this a little bit and see that if you have a finite dimensional 

vector space... Somebody defines a complicated vector space but you know it’s finite dimensional. 

Once you know its finite dimensional, it becomes isomorphic to 𝔽𝑛 where 𝔽 is the scalar field, 

right? And 𝑛 is the dimension. That's it. Doesn't matter how complicated you define your vector 



space. As long as you know it's a vector space, you know it's a vector space over a field 𝔽 and it 

has dimension 𝑛, it has to be isomorphic to 𝔽𝑛, okay? So people tend to make a case that 𝔽𝑛 is the 

only vector space that you really need to study, why do you need to study this abstract notion of 

vector space etc. The reason is, you know, subspaces show up, you know, when you want to deal 

with all these subspaces of different dimensions, you know, it's good to think of them abstractly 

and then make some statements about it. This will show up again and again, okay? So 𝔽𝑛 is very 

important. Not to say it's not important, it's important to study it. But once you fix an 𝑛, you still 

have to worry about all its numerous subspaces and they all have different dimensions and then 

they may not be isomorphic to each other. So you have to study the abstract notion also. But know 

that 𝔽𝑛 is a very important finite dimensional vector space, okay? So that is something about 

isomorphism.  

So this tells you clearly when invertible maps can exist, right? So if you have a map from one 

subspace to another subspace and the dimensions are not the same, then you clearly know already 

that it cannot be invertible, right? Finished. So the dimension controls this invertibility in a very 

very important way. So dimension is very important. First thing to check is the dimension. If the 

dimensions are not the same, you cannot have an invertible map, okay? So only when the 

dimensions are the same you go in and check for injectivity, surjectivity and other conditions, 

okay? So this is a good thing to know. Okay. Now we have seen this important relationship 

between linear maps and matrices. We saw that once you define a linear map, okay, 𝑇: 𝑉 → 𝑊, if 

you fix a basis for 𝑉, fix a basis for 𝑊, you get a matrix representing that linear map, okay? We 

have seen that. Now we also know that the space of all linear maps is a vector space by itself, 

right? I can define addition of linear maps, I can define scalar multiplication of linear maps. So it 

becomes a vector space. Now the space of matrices, okay, when you have dimension 𝑚 to 𝑛, right? 

𝔽𝑚,𝑛, that is also a vector space. We have seen that, we know how to add matrices, we know how 

to do scalar multiplication of matrices and there is like a very close connection here. And in fact it 

turns out these two vector spaces are isomorphic, okay? So these are things we hinted at before. 

But these two vector spaces are isomorphic, the vector space of all linear transformations from 𝑉 

to 𝑊 where dimension of 𝑉 is 𝑛 and dimension of 𝑊 is 𝑚 is isomorphic to 𝔽𝑚,𝑛, the space of 

𝑚 × 𝑛 matrices. These two are isomorphic and the isomorphism goes in a very simple, obvious 

way. You define a basis. Once you define a basis, you can define the isomorphism. What is that? 

You find, simply find the matrix corresponding to the basis, okay? How do you go from linear 

transform to matrix? You define a basis for 𝑉, basis for 𝑊, compute the matrix corresponding to 

the linear transform. You go to the matrix. You also know how you can go from matrix to linear 

transform, right? So linear map is very easy to do. You know you can pick a basis, whatever basis 

you want, and then each column represents the map in the other direction, right? So it's easy to go 

from one to the other. So there is a map like this, you can show that the map is linear. It's injective, 

it's surjective. Those proofs I'm skipping, you can do this. So this connection between linear maps 

and matrices is not just some computational thing, it is tightly coupled. It is an isomorphism in 

some sense, okay? So both of these are the same. So once you know it's isomorphism, then you 



can now compute the dimension, right? So what? Because I know it’s an isomorphism, these two 

should have the same dimension, right? So from there you can quite easily conclude that the 

dimension of the set of all linear maps, the vector space of all linear maps from 𝑉 to 𝑊 is simply 

equal to dim 𝑉 × dim 𝑊, okay? Why? Because it is isomorphic to 𝔽𝑚,𝑛 and 𝔽𝑚,𝑛 clearly has 

dimension 𝑚𝑛, right? So we know we can find a linearly independent space there, set there which 

spans the space. So you are done, okay? So this is a nice result. I mean maybe the, you know, the 

beauty of it is not immediately apparent. It is sort of simple in some sense. But this sort of firms 

up our connection between linear maps and matrices, okay? So they are the same thing structurally, 

okay? In fact even under multiplication they are the same, right? Composition, though this result 

directly doesn't talk about it, the composition is also preserved by multiplication, okay? So that's 

isomorphism of linear maps and matrices. Okay. 
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So the next topic that we want to do in this lecture is define operators, okay? They are very simple 

to define. A linear map from a vector space to itself is called an operator. It's given a special name 

and it's also especially significant. So most of the linear maps we study will be operators, they will 

work from vector space to itself. The input will be from one vector space, output will also be into 

the same vector space, okay? So this is the most interesting linear map of all because it has a lot 

of wonderful properties. We will study it over and over again. So we give it a special name, okay? 

We say it is an operator, okay? The set of all operators is 𝐿(𝑉, 𝑉), right? Maps from 𝑉 →  𝑉, so 

you can shorten that and simply call it 𝐿(𝑉). If you say 𝐿(𝑉), it is a set of operators on 𝑉, okay? 

And like I said, it is put in the slide here also - operators are easily the most important linear maps. 



Lots of interesting connections they have and particularly invertible operators. What are invertible 

operators now? Operators which are invertible, right? So an operator is a linear map. If it is 

invertible, you become invertible. So now operators will correspond to square matrices, right? So 

you have both input and output having the same dimension. So square matrices and invertible 

square matrices play a very important role, okay?  
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So a natural question is - supposing you have a finite dimensional space, okay and you are looking 

at operators, right? What can one say about injectivity, surjectivity, invertibility, okay? We have 

already seen this, two examples before. If you have infinite dimensions, then all sorts of strange 

things can happen. You can have injectivity without invertibility, you can have surjectivity without 

invertibility. What about finite dimensions? It seems like in finite dimensions, something should 

not be, you know, you should not have so much flexibility, you only have finite dimensions. And 

if you say it's one-to-one it looks almost like, you know, it should be invertible, right? So if 

everything, you cannot have one without the other. Seems like a result, okay? And it turns out it is 

true, okay? So in finite dimensional vector spaces, here is this wonderful result. This result says in 

finite dimensional vector spaces, the three properties we studied are equivalent for operators. If 

you look at operators in finite dimensional vector spaces, the three properties we study in terms of 

classifying the maps, right, injectivity, surjectivity invertibility - they are all equivalent. What do 

I mean when I say a bunch of things, properties are equivalent? Any one implies the other, okay? 

So when I say a, b, c are equivalent, a implies b, a implies c, b implies a, b implies c, c implies a, 

c implies b. Everything. So any one you check, everything is true, okay? And the way to prove 



these things when you say, list a bunch of conditions and say they are all equivalent, the way to 

prove it is the following. Usually you show a implies b and then you show b implies c and then 

you show c implies a, okay? Once you show this, it's enough. You don't have to show all the 

possible other combinations, right? Why is that? Because, you know, you can sort of complete the 

loop, right? So a implies b, b implies c, c implies a. So c will imply b also, you can just go on like 

that, okay? So that is the way to prove these implications.  
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The first implication, a implies b, is sort of direct. If it is invertible, it’s injective, right? So I do 

not need to restrict myself to anything for that. So clearly that is true, okay? What about b implies 

c? We will rely on the fundamental theorem again. You know 𝑇 is injective, so dimension of null 

of 𝑇 is zero, so you simply use the, you know, fundamental theorem. So dimension of 𝑉 equals 

dimension of range of 𝑇, and remember 𝑇 is an operator, okay? So which means it went 𝑉 →  𝑉, 

so its range occupies the full space 𝑉, so you get surjectivity, okay? What about c implies a? 

Remember in c, I am told that 𝑇 is surjective, okay? And I want to show 𝑇 is invertible, okay? 

What is the definition? I already know if an operator is surjective and injective, then it is invertible, 

right? So I already know it’s surjective. So the only thing I really have to show is 𝑇 is injective 

also, okay? So for c implies a, if you use the fundamental theorem, I know the dimension of range 

of 𝑇 equals dimension of 𝑉, so we use the fundamental theorem. You get dimension of null of 𝑇 

equals 0, so you get that the map is injective also. So once you have surjectivity and injectivity, it 

is also invertible, okay? So a implies b is true, b implies c is true, c implies a is true. And you are 

done, okay? So that's nice to know, okay? When you are dealing with operators in finite 



dimensional vector spaces, you just talk about invertibility and non-invertibility, you do not have 

to worry about injectivity, surjectivity all those things, right? So that's why you will see 

invertibility playing a, you know, central role in all of these vector spaces. So people don't talk too 

much about injectivity, surjectivity, they are not interesting in finite dimensional vector spaces. 

Just invertibility is good enough, okay?  

Okay, so this slide sort of summarizes how to come up with these examples, particularly with 

respect to matrices, right? So we know linear maps and matrices are one and the same thing and 

some sort of an isomorphism. And supposing I give you a matrix, okay? How do you find out 

whether it's invertible or not, okay? The first thing is - it has to be a square matrix, right? So you 

just rule out the cases when it's not a square matrix, okay? If it is not a square matrix, if 𝑚 > 𝑛, 

number of rows is larger, then the matrix, you know it cannot, matrix cannot represent a surjective 

map, okay? So we know immediately it is out, okay? Same thing with the number of rows. If it is 

lesser than the number of columns, okay, it becomes like a broad matrix, then it cannot be injective, 

we know that. That's also true. So it cannot represent an invertible map. So non-square matrices 

are out. They're not, they're not going to be invertible, right? So we know that already. If they are 

square, then what should happen? The dimension of the range should be equal to the entire 

dimension, like the size of the matrix, right? If you have an 𝑛 × 𝑛 matrix, okay, so the square, if 

you have an 𝑛 × 𝑛 matrix, dimension of column space should be equal to 𝑛, right? So how many 

vectors do we have in the column? We have 𝑛 vectors in the column, 𝑛 columns, right? So there 

are 𝑛 vectors in the matrix. Let me rephrase that. I have an 𝑛 × 𝑛 matrix, so there are 𝑛 columns, 

the column space is the span of those 𝑛 vectors, right? So if those 𝑛 vectors are linearly 

independent, right? Then the dimension of the column space will be 𝑛, isn't it? If they become 

linearly dependent, then the spanning set, you know, linearly independent spanning set will be 

lesser. It will not be full rank, right? So a simple condition I need for a square matrix to be invertible 

is - it should have full rank, full column rank, right? All the column vectors, the 𝑛 columns should 

be linearly independent. If they are linearly dependent, then the column space is spanned by a 

smaller set less than 𝑛, so then the dimension of the column space does not become 𝑛, it's not 

surjective and it's not invertible, okay? So this condition is very interesting. So given a column, 

given a matrix, how do you find if it’s invertible? Simply check if the columns are linearly 

independent or not, okay? So that you know how to do. We can do Gaussian Elimination to check 

it, okay? So this way you can come up with a lot of invertible matrices, right? So you just take any 

basis, right, what is in fact - if you say, if you have n columns and they're all linearly independent, 

then the n columns form a basis for 𝑉, right? You take any basis for 𝑉, put it as the columns, then 

you get an invertible matrix, okay? So that is a nice thing to know as well, okay? 𝑛 columns should 

be linearly independent, okay? The 𝑛 columns, they are in 𝑛 dimensional space, you know they 

are linearly independent. That implies 𝑛 columns form a basis for 𝔽𝑛, so this gives you sort of a 

recipe to come up with invertible matrices. How do you come up with invertible matrices? Simply 

take any basis for the vector space 𝑉 and then you know how to do that. Gaussian Elimination will 



help you. If you have to extend some basis to a basis for 𝑉, you can use Gaussian Elimination etc. 

okay?  
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So that is the end of the lecture. We saw quite a few important ideas or maybe mostly definition 

oriented, but these ideas will help firm up a lot of things. First thing we saw is invertible linear 

maps and invertible operators. So these are very very important. They play a central role in a lot 

of constructs in linear algebra. And then we saw that when you have an invertible map, things 

become isomorphic. So you can work in either one space or the other. As long as they are 

connected by an invertible map, you can go back and forth and you will be fine, okay? So those 

are the central ideas. We'll proceed and see how to use invertibility of operators. And operators in 

particular for doing something, right? So we have defined all these things. What can we do with 

it? What can we do with invertible operators? We will see that in the next lecture. Thank you. 

 


